FOUR DISK UTILITY PROGRAMS
FOR USERS OF APPLE I, IT+, IIe AND IIc

BY THE AUTHORS OF Beneath Apple DOS
AND Beneath Apple ProDOS QUALITY

Don Worth and Pieter Lechner SOFTWARE

Bag of Tricks 2

by Don Worth and Pieter Lechner

(683 QuALTY SOFTWARE
Computer Book Division
21601 Marilla Street, Chatsworth, CA 91311
(818) 709-1721

© 1985 Quality Software. All rights reserved. No part of this product may
be reprinted, or reproduced, or utilized in any form or by any electronic,
mechanical, or other means, now known or hereafter invented, including
photocopying and recording, or in any information storage and retrieval
system, without permission in writing from thePublisher. No patent
liability is assumed with respect to the use of the information contained
herein. While every precaution has been taken in the preparation of this
product, the publisher assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the use of
the information contained herein.

The word Apple and the Apple logo are registered trademarks of Apple
Computer, Inc. Apple Computer Inc. was not in any way involved in the
writing or other preparation of Bag of Tricks 2, nor were the facts presented
here reviewed for accuracy by that company. Use of the term Apple
should not be construed to represent any endorsement, official or other-
wise, by Apple Computer, Inc.

International Standard Book Number: 0-912985-35-6
87 86 85 54321

Printed in the United States of America

TABLE OF CONTENTS

Chapter 1 INTRODUCTION

LOADING THE BAG OF TRICKS 2 DISKETTE 1-1

TRANSFERRING BAG OF TRICKS TO ANOTHER PRODOS VOLUME 1-
THE FOUR PROGRAMS AND WHAT THEY DO 1-2

BECOMING A REGISTERED OWNER 1-4

Chapter 2 TRAX - By Pieter Lechner

ALPHABETICAL LISTING OF TRAX COMMANDS 2-2
TRAX COMMAND DESCRIPTIONS 2-2

TRAX ERROR MESSAGES 2-6

TRAX--A FUNCTIONAL DESCRIPTION 2-9

A TRAX TUTORIAL 2-13

Chapter 3 INIT - By Pieter Lechner

ALPHABETIC LISTING OF INIT PARAMETERS 3-2
DESCRIPTION OF INIT PARAMETERS 3-3

COPYING DISKS 3-5

INIT ERROR MESSAGES 3-6

HOW SECTOR SKEWING CAN AFFECT DISK PERFORMANCE 3-9
AN INIT TUTORIAL 3-19

Chapter 4 ZAP - By Don Worth

ALPHABETICAL LISTING OF ZAP COMMANDS 4-3
ZAP COMMAND DESCRIPTIONS 4-4

ZAP ERROR MESSAGES 4-19

ZAP--A FUNCTIONAL DESCRIPTION 4-24

A ZAP TUTORIAL 4-34

Chapter 5 FIXCAT - By Don Worth
FIXCAT MESSAGES 5-3

FIXCAT--A FUNCTIONAL DESCRIPTION 5-19
A FIXCAT TUTORIAL 5-24

TABLE OF CONTENTS

Chapter 6 ADVANCED TUTORIALS

IDENTIFYING AND CORRECTING FORMATTING ERRORS 6-1
IMPROVING ACCESS TIME FOR DOS DISKETTES 6-2

FINDING THE A AND L VALUES OF A BINARY FILE §6-3
PATCHING DOS USING ZAP 6-5

RELEASING UNUSED SPACE IN DOS 3.3 FILES 6-7

SCANNING A DISK FOR I/O ERRORS 6-10

LOCATING AND FIXING AN I/0 ERROR 6-11

COPYING PASCAL FILES TO DOS USING ZAP MACROS 6-12
COMPARING FILES USING ZAP MACROS 6-15 ‘
RECOVERING LOST SECTORS IN THE DOS 3.3 VTOC BITMAP 6-16
RECLAIMING TRACKS 1 AND 2 FOR FILESPACE 6-18

A DOS~LESS BOOT PROGRAM 6-19

UN-DELETING A DOS 3.3 FILE 6-21

RECONSTUCTING A BLOWN CATALOG 6-23

MODIFYING ZAP TO WORK WITH A VIDEX 80-COLUMN CARD 6-2f
A ZAP MACRO FOR OPENING PRODOS FILES 6-29

USING ZAP WITH A "SIDER" HARD DISK 6-30

Appendix A DISCUSSION OF DISK 1I/0 ERRORS

SYMPTOMS AND POSSIBLE SOLUTIONS A-1
NATURE OF DISKETTE ERRORS A-3

ACKNOWLEDGEMENTS

The concept for ZAP originated with a similar program written for
the IBM 360 by Vie Tolomei and myself almost ten years ago.
Thanks to Pete Nielsen, Lou Rivas, and Dave Robertson for their
suggestions, criticisms and product testing.

Don D. Worth
My thanks to Greg Staie and Dave Garson for their assistance, and
a special thanks to Will Greaves, who developed the original idea for

TRAX.
Pieter M. Lechner

Apple Books from Quality Software

Beneath Apple DOS $19.95
by Don Worth & Pieter Lechner

Beneath Apple ProDOS $19.95
by Don Worth & Pieter Lechner

Understanding the Apple II $22.95
by Jim Sather

Understanding the Apple Ile $24.95
by Jim Sather .

Apple Utility Software from Quality Software

Universal File Conversion (includes diskette) $34.95
by Gary Charpentier

For your convenience,
an order form is provided on the last page of this book.

Downloaded from www.Apple2Online.com

CHAPTER 1

INTRODUCTION

Bag of Tricks 2 is a collection of four utility programs. Together these
programs can accomplish most of the functions Apple II disk owners need
for manipulating data on disks as well as error detection and recovery.

With Bag of Tricks our intent was to create powerful and easy to use
utilities of value to both the very technical user and the average user.
Our approach was to write programs we ourselves wanted to use. During
development we started by adding all the features we needed and added
all the features we imagined anyone else might want. Bag of Tricks 2
adds a few new features that users have requested, but primarily it
expands the original Bag of Tricks so that many of its functions can work
not only with 5 1/4" floppies, but also with other popular disk devices
such as hard disks, 3 1/2" floppy disks, and RAM disks.

As a result, Bag of Tricks 2 remains unique in that it can perform more
useful functions than any other disk utility available for the Apple II
computer. Hopefully beginners will not find this intimidating. Every
effort has been made to document the programs carefully, providing
many examples of their use, so that expert and novice alike can profit
from them,

LOADING THE BAG OF TRICKS 2 DISKETTE

Bag of Tricks 2 consists of four separate programs provided on a standard
ProDOS formatted 5 1/4" diskette, The best way to boot Bag of Tricks 2
is to turn off the computer, place the diskette the drive you normally
boot from, and turn on the computer. Bag of Tricks 2 will load itself in
and display the main menu screen, which asks you to press a key to select
one of its four programs. It is also possible to boot the program by
inserting the diskette in the proper drive and typing PR#6 [RETURN] (or
other appropriate slot number).

4-2 Bag of Tricks 2

Bag of Tricks 2 will load and operate on any Apple Ile or Apple Ile. It
will also operate on an Apple II Plus if the computer is configured for 64K
of memory. All programs except ZAP use only the 40-column text mode,
ZAP can operate in either a 40-column mode or, if the capability exists,
in an 80-column text mode. Apple II Plus owners with a non-Apple 80-
column card will have problems running ZAP in 80-column mode unless it
is modified for their installation. See the tutorial in Chapter 6,
"Modifying ZAP to Work with a Videx 80-Column Card".

Those who understand the ProDOS operating system will notice that the
"main menu" program for Bag of Tricks 2 is a file called "BOT.SYSTEM".
RUNning this file with ProDOS active will run the Bag of Tricks program.
This method of booting Bag of Tricks 2 is not recommended, however,
because the version of PRODOS on Bag of Tricks 2 is the version it
expects to work with., This is version 1.1.1 with a modification to the
Disk II Device Driver to allow up to 50 tracks on Disk II devices. If this
version of PRODOS is not active, there may be undesired results.

Except for INIT, the Bag of Tricks 2 programs can support an optional
printer, The printer interface card can be in any slot.

Bag of Tricks 2 supports the standard ProDOS QUITCODE. If you wish to
continue on to another SYSTEM program (such as BASIC.SYSTEM) after
using Bag of Tricks 2, press Q when the main menu screen is visible.

The Bag of Tricks 2 diskette may be backed up, and we recommend that
you make a backup copy for your use and keep the original in a safe
place. We also recommend that you become a registered owner of Bag of
Tricks 2 (see the last section of this chapter).

TRANSFERRING BAG OF TRICKS TO ANOTHER PRODOS VOLUME

Many users will want to put Bag of Tricks on a 3 1/2" floppy or on a hard
disk., Certain precautions should be used when doing so. First of all, all
of the files must be in the Volume Directory. The Volume Directory can
have any name., The four program files ZAP, TRAX, INIT, and FIXCAT
cannot run by themselves. The files BOT.SYSTEM, PRODOS, BOT2PIX, and
ZDO0S are needed to run any of the four programs., FIXCAT and INIT also
require the file MENU,

As mentioned above, the version of PRODOS on the Bag of Tricks 2
diskette has been slightly modified. If your Volume Directory already
has a version of PRODOS on it, you must decide whether or not to replace
it with the Bag of Tricks 2 version of PRODOS. Replacing it will allow
Bag of Tricks 2 to operate properly with floppy disks of more than 35
tracks, but replacement may not be best for other software on the
volume.

THE FOUR PROGRAMS AND WHAT THEY DO

Although the four programs that comprise Bag of Tricks 2 can often be
used together to perform some task, the purpose of each is quite

Introduction 1-3

ARMED WITH YOUR BAG OF TRICKS,
YOU NEED NOT FEAR “SN(DELY DISKCRASH*

different and the prospective user need not feel that he must have a use
for all four programs, or all of the functions of any one, The programs
provided are briefly described as follows:

TRAX:

A track examination program. TRAX will read a track from a 5 1/4"
diskette in its "raw" pre-nibbilized form and format it on the screen,
attempting to pick out the sector formatting. If the diskette is non-
standard in its formatting, such as a protected diskette or one which has
been damaged in some way, TRAX will highlight its anomolies. TRAX is
also useful in conjunction with the INIT program to determine the
physical order or skewing of sectors on a diskette.

INIT:

The INIT program can be used to reformat a single track on a 5 1/4"
diskette, a range of tracks, or the entire diskette. In addition, INIT will
optionally attempt to preserve the contents of any readable sectors it
finds before reformatting. Thus, INIT can be used to fix a single sector
whose formatting has been damaged so that it can no longer be read from
or written to. This avoids having to initialize the entire diskette, INIT
will also allow you to specify the order of the sectors on any given track.
INIT also provides a copy program that allows you to copy a damaged
disk, restoring all the good data and reformatting any damaged sectors.

ZAP:

ZAP in its simplest sense allows you to read and modify a disk at the
block or track/sector level. Disk data may be read and displayed in
hexadecimal and ASCII and, optionally, modified and rewritten to the
disk. ZAP provides over 50 commands, including some programmability

1-4 Bag of Tricks 2

with macros, labels, and loops, allowing you to perform complex
manipulations on diskettes. Full support exists for DOS files, ProDOS
files, CP/M files, and PASCAL files. ZAP is in some ways the most
complex of the four programs, but for most users it is the most
frequently used.

FIXCAT:

The FIXCAT program is an automated utility which allows you to
diagnose and correct errors in the catalog track of a DOS diskette or the
directory files of a ProDOS diskette. This is a critical utility because
the catalog or directory are normally the most frequently read and
written to areas on the disk, Thus they are the most likely to be
damaged, and when they are damaged you lose access to all your files!
FIXCAT has recovered hundreds of lost disks over years, and in many
cases it has done so automatieally, with no significant user input!

It is the authors' belief that learning is best accomplished by example.
Therefore we have provided example sessions for each of the four
programs that comprise Bag of Tricks 2. In the next four chapters each
of the programs is covered separately. The reference material you will
want to refer to frequently is in the front of each of these chapters. At
the end of each chapter you will find a functional description of the
program and a tutorial. The last chapter (Chapter 6) is devoted to
useful examples, some of which involve more than one of the individual
programs. The techniques provided in Chapter 6 not only demonstrate Bag
of Tricks 2 but also should be of value in fixing diskettes or patching
DOS, ProD0OS, and other programs, We suggest that you first read over
the functional descriptions of each program and work through the
associated tutorials on your own Apple before attempting the procedures
covered in Chapter 6. However, a complete understanding of each of the
programs is not neccessary to successfully use Chapter 6.

BECOMING A REGISTERED OWNER

We strongly recommend that you fill out and return the Bag of Tricks 2
registration card that came with your copy of Bag of Tricks 2. Only
registered owners will be eligible for discounts on future upgrades, if
any, to Bag of Tricks. Registered owners will also be placed on Quality
Software's mailing list, which means they will receive all of Quality
Software's mailings announcing availability of Apple-related products.

CHAPTER 2

TRAX—By Pieter Lechner

We have put TRAX first in the order of the Bag of Tricks 2 programs
because it deals with the diskette at its most primitive level. The fact
is, however, that TRAX is the most technically challenging of the four
Bag of Tricks programs. Although it is not hard to use TRAX, its
applications are harder to appreciate, and we therefore recommend that
beginners become familiar with the other Bag of Tricks programs,
especially ZAP, before trying to use TRAX,

IMPORTANT NOTE: Unlike the other Bag of Tricks 2 programs, TRAX will
not operate with any disk device other than a Disk II or equivalent 5 1/4"
floppy disk drive. When you run TRAX, it looks for a Disk II drive. If it
finds none, it immediately exits.

The purposes of TRAX are twofold. First, it provides you with the
ability to locate errors on a diskette rapidly and to determine the extent
of the damage. Second, TRAX provides you with the means of examining
how data actually appears on a 5 1/4" floppy diskette, which is useful in
_better understanding DOS. While TRAX is designed to operate on normal
(unprotected) 13- or 18-sector diskettes, its data reading technique
allows it to read any 5 1/4" floppy diskette created using a Disk II
compatible disk controller,

If you have never used TRAX before, you will want to skip over the
reference materials at the beginning of this chapter and read the
sections titled "TRAX--A Functional Description” and "A TRAX Tutorial.”
TRAX documentation is organized as follows:

Section Page
Alphabetic Listing of TRAX Commands 2-2
TRAX Command Descriptions 2-2
TRAX Error Messages 2-6
TRAX--A Functional Description 2-9

A TRAX Tutorial 2-13

2-2 Bag of Tricks 2

ALPHABETICAL LISTING OF TRAX COMMANDS

The following list presents the ZAP commands in alphabetical order
followed by the page number where a complete description of each
command may be found.

[EXP] 2-5
0 2-3
? 2-3
A 2-3
B 2-5
c 2-3
D 2-3
E 2-5
END 2-2
F 2-3
G 2-5
L 2-5

N (analysis) 2-4
N (raw mode) 2-5
P (analysis) 2-4
P (raw mode) 2-5
PR# 2-3

PRINT 2-3

R 2-4

S 24

vV 2-4

X 2-4

TRAX COMMAND DESCRIPTIONS

Miscellaneous Commands are valid in either mode. Analysis Mode
Commands are valid only in the Analysis Mode. Raw Data Mode
Commands are valid only in the Raw Data Mode.

MISCELLANEOUS COMMANDS

?[EXP]

The calculator command. The value of the expression is printed on the
command line in hexadecimal and decimal. The expression may be any
valid TRAX expression, which consists of one or more numeric terms
connected by addition or subtraction operators.

END

The END command exits TRAX and returns to the Bag of Tricks 2 main
menu screen,

Trax 2-3

PR#[EXP]

Sets the slot number to be used with an optional printer. The default is
1. If a printer controller card is plugged into this slot, you may issue the
PRINT command. The printer slot in use is displayed on the top line of
the display.

PRINT

Copies the entire screen image to your printer. This comand may be
issued in either the analysis or raw data mode,

ANALYSIS MODE COMMANDS
0

Force recalibration of the disk arm followed by a read, analysis, and
.display of track 0. Use this command if TRAX seems to be reading the
wrong track.

A

Display the result of the checksum computations for the address fields of
each sector. The results are shown in the center column of the display
and are normally zero. The computation consists of exclusive ORing the
four values in the address field.: After this command has been used, use
the C command to return the screen to its normal display.

C

Display the normal analysis-screen, which shows in the center column the
actual address checksums read from the disk. This command is usually
used to clear the display after an A or D command has been issued.

D

Display the result of the checksum computations for the data fields of
each sector. The results are shown in the center column of the display
and are normally zero. The computation, described in detail in our
book Beneath Apple DOS, essentially involves exclusive ORing the values
in the data field. After this command has been used, use the C command
to return the screen to its normal display.

F

Toggle between 13- and 16-sector formats. While TRAX will in many
cases identify the format of a particular diskette, the user must change
the format setting manually.

2-4 Bag of Tricks 2

N ..or.. NLEXP]

Read the next track (i.e. the current track plus one), analyze the data,
and display the results. If [EXP] is present, read the track that is the
current track plus [EXPI.

P ..or.. P[EXP]

Read the previous track (i.e. the current track less one), analyze the
data, and display the results. If [EXP] is present, read the track that is
the current track less [EXP].

R ..or.. R[EXP]

If the operand [EXP] is omitted, then read the track indicated by the
track number displayed at the top of the screen, analyze the data, and
display the results, If [EXP] is specified then read the track indicated
by [EXP].

S[EXP1],[EXP2] ..or.. S[EXP1] ..or.. S,[EXP2]

The S command sets the slot and/or drive for subsequent disk reads, The
slot and drive number are initially set to those used to boot Bag of Tricks
2, or to the highest-numbered slot with a 5 1/4" floppy drive, if Bag of
Tricks 2 was not booted from a 5 1/4" floppy. If you want to change
them you may use this commmand. The first expression, [EXP1], is the
slot number and may be relative or absolute, ranging in value from 0 to 7.
If you specify a slot that does not have a 5 1/4" floppy disk drive
connected, the error message "NOT A FLOPPY" will result. [EXP2] is the
drive number, 1 or 2, and may be relative or absolute. If [EXP1] is
omitted, the current slot remains unchanged. If [EXP2] is omitted, drive
1 is assumed.

v

Verify the diskette starting at the next track and continuing through
track 49 (Hex 31). Any abnormalities are displayed, stopping the
verification process. The verification process may be continued by
pressing V again. Verification will normally stop when the last track on
the disk has been read and TRAX is attempting to verify a non-existent
track.

X

Exit the analysis mode and enter the raw data mode, which displays the
raw hex data of the current track.

Trax 2-5

RAW DATA COMMANDS

[EXP]

Scroll forward [EXP] lines (one line is eight hex bytes) in the hex
display of the track. If [EXP] is negative, then scroll back. [EXP] can
range from -9 to +9,

B

Go to the beginning of the raw data buffer.

E

Go to the end of the raw data buffer.

G ..or.. GLEXP]

Go to the current buffer address. If [EXP] is present, set the current
buffer address to EXP and go to it, The buffer address must be in the
range $0 to $1AFF,

L .or.. LIEXP]

Look for the current search byte. If [EXP] is present, then change the
current search byte to [EXP] and look for it. The search always starts
with the second line on the screen. If found, the desired byte will be

displayed on the top line of the raw hex dump. If the search is
unsuccessful, an error message appears.

N

Scroll forward one page (80 hex bytes) in the raw data buffer,

P

Scroll backward one page (80 hex bytes) in the raw data buffer.

X

Exit the raw dump mode and return to the analysis mode, which
redisplays the address and data field information,

2-6 Bag of Tricks 2

TRAX ERROR MESSAGES

It should be pointed out that although TRAX is accurate in most cases,
some unforseen types of I/0 errors may occur that will not be correctly
interpreted. TRAX is meant to be a tool in aiding the user to determine
the nature and location of damaged areas of a diskette, but we do not
guarantee that TRAX can uncover every possible type of diskette error.

ANALYZING DATA

A track has been read in and now TRAX is attempting to determine if any
part of the track has been damaged. When the analysis is complete, the
results are displayed on the address and data field display.

APPEARS TO BE 13 SECTOR FORMAT

This message will probably occur if Format is set to 16 and a 13- sector
disk is used. In the case of certain damaged diskettes, TRAX might not
be able to distinguish between 13- and 16-sector formats.

APPEARS TO BE 16 SECTOR FORMAT

This message will probably occur if Format is set to 13 and a 16- sector
disk is used. In the case of certain damaged diskettes, TRAX might not be
able to distinguish between 13- and 16-sector formats.

BYTE NOT FOUND

A search, using the L command in the raw dump mode, has failed. The
search byte was not found between the current buffer location and the
end of the buffer.

DAMAGED

This indicates that TRAX could not find
enough of an address or data field (in some
cases both) to make a meaningful display.
This generally indicates that the particular
data is not recoverable,

— —f
TRAX HELPS YOU TRACK DOWN

Trax 2-7

END OF BUFFER

An attempt has been made to move forward in the raw data buffer and
the bottom of the buffer has been reached.

MISSING OPERAND

The command you have used is a legal one but requires at least one
operand.

NO DATA

When displayed on the command line, this indicates that the command
just tried can only be executed if data has been read in. There is either
no data in the data buffer or a Slot command has been issued, effectively
clearing the buffer. Issue a command such as 0 or R that will read data
into the buffer, then try the command again.

The "NO DATA" message may also appear on the analysis display. This
will generally happen only with 13-sector diskettes indicating a sector
that has no data field. (The DOS initialization process for 13-sector
diskettes never writes the data field, whereas a blank data field is
written for 16-sector diskettes.,) It is possible for a data field to be
damaged in such a way that the data field cannot be found, in which case
it is probably not recoverable.

NOT A FLOPPY
You have tried to access a slot that does not have a controller card
recognizable as a 5 1/4" floppy disk drive.
NUMBER TOO BIG

You have entered a numeric expression that
is greater than the maximum value allowed.
NUMBER TOO SMALL

You have entered a numeric expression that
is less than the minimum value allowed.

—~ e <« —

THE SOURCE OF DISK ERRORS

2-8 Bag of Tricks 2

READING DATA

This message is displayed when the disk drive is working. The drive will
be turned on and a brief delay will occur to allow the motor to come up
to speed. Then the track is dumped into a large buffer area one byte at a
time.

SYNTAX ERROR

You have typed a non-existent command or the command operand is not
in the right format. Check the command line.

TOP OF BUFFER

An attempt has been made to move backward in the raw data buffer and
the top of the buffer has been reached.

UNABLE TO INTERPRET DATA

TRAX has been unable to find any valid data on the track. In the case of
a normal diskette, this is a strong indication that no recoverable data
remains. In the case of a "protected" diskette this simply indicates that
the format being used is different enough from a normal diskette that
TRAX does not recognize it.

UPDATED

This prompt will be displayed to indicate that a 13-sector diskette has
been updated to contain a sector written in 16-sector format. This is
commonly done to allow a diskette to boot on a disk controller card
equipped with either a 13-sector or 18-sector controller ROM,

VERIFICATION COMPLETE

This message indicates the successful end of a Verify command, It
should only occur if you have a 50-track disk drive and a diskette with all
50 tracks formatted. We've never heard of such a drive, so we don't
expect this message. Normally the V command will end when it tries to
read a non-existent track (such as track $23 on 35-track drives or track
$28 on 40-track drives).

VERIFYING DISKETTE
This indicates that tracks are being verified to insure that all sectors on

those tracks are readable, If an abnormality is found, TRAX will stop
the verification process and display the analysis of the track in question.

Trax 2-9

WRONG MODE

You have entered a command that exists but can only be used in the
other operating mode. For example, L is a raw data mode command and
trying to use the L command in analysis mode will result in this message.

TRAX—A FUNCTIONAL DESCRIPTION

This section describes how to use TRAX. It is intended for first time
users and for those who have not used TRAX for a while. This section
also includes some discussion of the problems of analyzing raw disk data.

If you are unfamiliar with TRAX, it is recommended that you read over
this section quickly, then perform "A TRAX Tutorial" (the following
section), and return to this section to study it in more detail.

Once you become familiar with TRAX, you should find the reference
material in the front of the chapter sufficient to operate the program.

Throughout this chapter we use such terms as raw data and nibblizing.
If these terms are not at all familiar to you, we recommend that you read
Chapter 3 of Beneath Apple DOS, or Appendix C of Beneath Apple ProDOS.
These contain fairly complete discussions of Apple II 5 1/4" diskette
formatting,

TRAX COMMAND SYNTAX

In general, TRAX commands are similar in syntax and function to ZAP
commands. Command names consist of one or more characters and may
require zero, one, or two operands. No spaces may appear between the
command name and its operands. Only one command may be issued at
one time using TRAX.

A nice feature of TRAX allows you to re-enter the previous command
with a single keystroke (RETURN is not required). If you have not
pressed any keys since the last command was entered, the TAB key
(CTRL-1 on Apple II Plus) automatically reenters and executes the
previous command.

If an error occurs during the execution of any command, processing stops
and an error message is displayed. Error messages are described in
detail in a previous section of this chapter.

TRAX commands can be divided according to operating modes. Some
commands are available in either operating mode, some are only available
in the analysis mode, and some are only available in the raw data mode.

2-10 Bag of Tricks 2

MISCELLANEOUS OPERATIONS

Related Commands:

END EXIT PROGRAM TO MAIN MENU
PR#[SLOT] SET THE PRINTER SLOT

PRINT DUMP SCREEN TO PRINTER

? CALCULATOR COMMAND

These four commands are available in and have the same function in both
the analysis mode and the raw data mode.

ANALYSIS MODE

Related Commands:

0 RECALIBRATE AND READ TRACK 0
A SHOW ADDRESS FIELD CHECKSUM
C DISPLAY ADDR CHECKSUM VALUES
D SHOW DATA FIELD CHECKSUMS

F TOGGLE FORMAT, 13- OR 16-SECTOR
NLEXP] READ NEXT TRACK PLUS EXP
P[EXP] READ PREVIOUS TRACK MINUS EXP
RI TRACK] READ A TRACK

S[SLOT],[DRIVE] SET SLOT AND DRIVE

v VERIFY FROM NEXT TRACK ON

X GO TO RAW DATA MODE

Because some of you will no doubt use TRAX to look at a "protected"
diskette, a few things should be made clear. Dumping an entire track of
raw, unnibblized data into memory is relatively simple (a short program
to perform that task was included in our book Beneath Apple DOS).
Interpreting the raw data is a much more complicated task.

GAPY |ADDRESS| GAP2 [DATAFIELD | GAP3 WDDRESS| GAP2 | DATAFIELD | GAPJ ADDRESH GAP2 | DATAFIELD | GAP3
FIELD FIELD FIELD
o "0 " ot " ”

Les £} > AB—_ce

#AOLOGUE oisx | raack | secron [cnecksund evnocue
vouuue | aconess | avoaess

MEX FF SYNC BYTES.
TYPCALLY 0055

Figure 21 Track Format

Trax 2-11

PROLOGUE VOLUME __ TRACK SECTOR CHECKSUM _ EPILOGUE

[bs aa 96 [xx vv]xx vv]xx vv]xx vv|oe aa e8]

ODD-EVEN ENCODED

DATA BYTE —D7DsDsD+DzD2D1Do
XX—1D71Ds1Ds1Ds
YY —1Ds1Da1D21Do

Figure 22 Address Field

Interpretation becomes even more difficult when very few assumptions
can be made about the nature of the data. This fact, along with our
desire not to produce a means of breaking disk protection schemes, led to
the following decision. TRAX assumes that the diskette being examined
is a normally formatted diskette that may have sustained some damage
during usage. It is possible to examine protected diskettes using TRAX,
but we are neither advocating nor supporting such usage.

TRAX attempts to identify the different segments of the track by
locating each gap (gap 1, gap 2, and gap 3 of Figure 2.1). This technique,
if successful, allows TRAX to recognize any abnormality in either an
address field or a data field. When all segments of the track have been
located, each is analyzed. The various address fields are decoded and
any deviation from the norm is indicated on the screen, In its raw form,
the address field appears like Figure 2.2.

Each of the data fields is also decoded, and any deviations from the norm

are indicated on the screen. In its raw form, the data field appears like
Figure 2.3.

DATA FIELD

PROLOGUE USER DATA CHECKSUM EPILOGUE

[o5 aa AD| 342 BYTES DATA | XX |DE AA EB]
—

SIX AND TWO
ENCODED

Figure 23 Data Field

2-12 Bog of Tricks 2

If the gaps cannot be found, secondary methods are used to determine if
any valid data exists on the track. If this also fails, TRAX will display
the message "UNABLE TO INTERPRET DATA" on the screen. Some of the
reasons that TRAX might fail to interpret data are that the track has
never been formatted, or the track is so badly damaged that no
recognizable portions remain. While the analysis mode will not correctly
diagnose every type of 1/0 error, it will uncover formatting errors a high
percentage of the time.

Another fact to remember is that the sector number displayed on the
analysis mode display is the number of the sector as recorded in the
address field. This number is not necessarily the same as the logical
sector number used by the operating system. The various operating
systems available for the Apple II use a table to translate the number in
the address field to the logical sector number. This is discussed in more
detail in Chapter 3.

RAW DATA MODE

Related Commands:

[EXP] MOVE FORWARD (BACK) EXP LINES
B GO TO BEGINNING OF BUFFER

E GO TO END OF BUFFER

G[OFFSET] GO TO BUFFER OFFSET

L[BYTE] LOOK FOR SEARCH BYTE

N SCROLL TO NEXT PAGE

P SCROLL TO PREVIOUS PAGE

X RETURN TO ANALYSIS MODE

A brief explanation of how TRAX reads raw data is in order. Raw data
bytes (disk bytes) are read from the desired track one byte at a time and
stored in memory. Enough bytes are read to guarantee reading the track
at least three times. This allows TRAX, in most cases, to find at least
one good track image. The "beginning" of the track (the end of gap 1 of
Figure 2.1) is then placed at the beginning of the raw data buffer, The
raw data buffer is $1B00 bytes long, more than enough to hold the disk
bytes on a 5 1/4" floppy disk track, which is typically about $1900 bytes
long.

Note that all Apple disk bytes have the high bit on. Chapter 3 of Beneath
Apple DOS and Appendix C of Beneath Apple ProDOS explain how disk
bytes relate to data bytes.

Trax 2-13

A TRAX TUTORIAL

The following tutorial is provided to familiarize the first-time user with
the features and operation of TRAX. Boot the Bag of Tricks 2 diskette
(see Chapter 1 for loading instructions), press T to select TRAX, and
follow along with the tutorial.

Look at the top line of the TRAX display screen. Included there is the
track number, which is currently 00. To read the indicated track number
into memory, type R and press the RETURN key. TRAX will begin reading
track 0. While it is working, TRAX will indicate the current operation
being performed, first reading the track, then analyzing the data, and
finally displaying the results, Your screen should look like Figure 2.4.

TRAX is now in the Analysis Mode. Most of the vital information used by
the disk operating system to locate and read data is displayed in this
mode. It is important that this information is correct, because if a
single byte is altered the entire sector is unreadable. The checksums
displayed at the bottom of the screen are not read from the diskette but
are actually the result of checksum computations. These computations
are performed on the appropriate data in a way similar to the way that
DOS performs them, and must provide a zero result (00) for valid address
and data fields.

Because you are examining the Bag of Tricks 2 diskette, which is a
normal, hopefully undamaged diskette, there should be no abnormalities
displayed on the screen. If there were you would hear a bell and the
appropriate screen location would be displayed in inverse. When an
error occurs in a checksum computation, and that error is the same for
every sector on the track (unlikely in normal usage), the erroneous value
is displayed in inverse. Should an error occur in one or more sectors, but
not the same error on every sector, a pair of inverse asterisks (**) is
displayed. In this case, you may access the actual checksum
computations with additional keypresses.

Now type A and press the RETURN key. The column in the middle of the
display, the one labeled CHS, will change to inverse and will display the
address field checksum computations for each sector. Each of these
checksums, which are computed by exclusive-ORing the four data values
in each address field, must be zero for a normal, undamaged diskette.

Now enter the D command. The column in the middle of the display will
again change to inverse, but this time it will display the results of the
data field checksum computations for each sector. Again, each of these
checksums must be zero for a normal, undamaged diskette. Enter the C
command to restore the screen to normal. For a detailed explanation of
the construction of address and data fields, see Beneath Apple DOS
(Chapter 3).

2-14 Bag of Tricks 2

ADDRESS FIELD

PROLOGUE VOLUME _ TRACK _ SECTOR CHECKSUM __ EPILOGUE

DS AA 96| XX XX XX XX |DE AA EB

‘F—/

TRAX SL=6 DR=1 TRACK=00 FORMAT=156 PR1
COMMAND: R

ADDRESS FIELD DATA FIELD
PROLG VOL TRK 3EC CHS EPILG PROLG EPILG

DSAAG6 01 00 00 01 DEAAJD5AAAD DEAA
D5AA96 01 00 01 00 DEAA D5AAAD DEAA
D5AA95 01 00 02 03 DEAA DSAAAD DEAA
D5AA96 01 00 03 02 DEAA DSAAAD DEAA
DS5AA96 01 00 O4 05 DEAA DSAAAD DEAA
D5AA96 01 00 05 O4 DEAA DSAAAD DEAA
D5AAQ6 01 00 06 07 DEAA DSAAAD DEAA
D5AA96 01 00 07 06 DEAA DSAAAD DEAA
D5AA96 01 00 03 09 DEAA D5AAAD DEAA
D5AA96 01 00 03 08 DEAA D5AAAD DEAA
D5AA96 01 00 OA OB DEAA DSAAAD DEAA
D5AA96 01 00 OB OA DEAA DSAAAD DEAA
D5AA96 01 00 OC OD DEAA DSAAAD DEAA
D5AA95 01 00 0D OC DEAA DS5AAAD DEAA
D5AA6 01 00 OE OF DEAA D5AAAD DEAA
DSAA96 01 00 OF OE DEAA [DEAE}—

ADDRESS CHECKSUM=00 DATA /CHECKSUM=00

£

PROLOGUE USER DATA CHECKSUM EPILOGUE

[os aa a| 3a2 BYTES DATA [xx_[oE aa e8]

‘DATA FIELD C__

Figure 24 Analysis Mode Display

Trax 2-15

Now enter the X command. This puts you in the Raw Data Mode, where
the raw disk data on the track is displayed. Figure 2.5 is a typical raw
data display, and points out how address fields and data fields can be
identified in the raw data.

While the raw track image is difficult to decode manually, it is
nevertheless informative and useful for viewing tracks that TRAX was
unable to interpret. TRAX stores the track image in a buffer in memory.
Buffer addresses range from $0000 to $1AFF. The end of the buffer is
padded with FF's to insure consistency for different size track images.

TRAX allows you to move freely through the raw data buffer. Type 1
and press the RETURN key. This scrolls the display up one line. Now
type 9 and press RETURN. Numbers from -9 to +9 will move the display
ahead or back the appropriate number of lines. Sixteen lines (128 disk
bytes) are displayed on the raw data display. Enter the N (Next)
command and the screen will scroll one page (16 lines) forward. The
opposite command P (Previous) scrolls back one page.

You can move to the beginning of the buffer by using the B command and
to the end of the buffer by using the E command. You can go to a
specific spot in the buffer with the G (Goto) command. Enter G1000.
Then issue an E command. Then simply enter G. The program
remembers the last Goto buffer position.

It is impossible to scroll past either the start or end of the buffer, and
any attempt to do so will result in an error message.

Experiment briefly to get a feel for how to move about within the buffer.
When you are done, press B to go to the beginning of the buffer.

You can also search for a particular byte when in the Raw Data Mode,
This is done with the L command. At this point the top of the display
identifies the current search byte as D5. This is the default value,
because D5 is the byte whieh normally begins all address and data fields.
Each time you issue the L command the next D5 in the raw data buffer
will move to the top line on the screen. In this manner you can very
rapidly locate and examine all address and data fields in the buffer., If
you wish, you may change the search byte. Enter the command LAD
(Look for $AD). This changes the search byte to $AD and looks for the
next occurrence of $AD in the buffer. Parentheses will be placed around
the value of the current search byte. Experiment with other values for
search byte, then exit the Raw Data Mode by pressing the X key. You
will be returned to the Analysis Mode.

When you are using TRAX to analyze diskettes, you should keep in mind
that the sector order in the Analysis Mode display is the same as the
order of the data in the Raw Data Mode buffer. This fact will, in many
cases, help you determine what portion of a damaged diskette has been
damaged. Thus, it is not uncommon in an analysis session to find
yourself switching back and forth between the two modes.

2-16 Bag of Tricks 2

TRAX SL=6
COMMAND: X

PROLOGUE

ADDRESS FIELD

VOLUME ___TRACK

SECTOR _CHECKSUM

EPILOGUE

I D5 AA 96|XX YY| XX YVIXX YYlXX YYIDE AA EBI

|

%AW TRACF DUMP

DR=1 TRACK=00/ FORMAT=16 PR1

SEARCH BYTE= D5

0000~ [D5_AA 96
0008~ AA AA

0010~
0018~
0020~
0028~
0030~
0038-
0040-
0048-
0050-
0058~
0060~
0068~
0070~
0078~

FC
AC
D9
9D
F2
EE
Fi
CD
B6
EA
FA
FD
D9
EF

AB

B2

DATA FIELD

PROLOGUE

USER DATA

CHECKSUM EPILOGUE

DS AA ADI 342 BYTES

pata | xx |oeaaes]

SIX AND TWO

ENCOD!

ED

Figure 25 Raw Data Mode Display

Trax 2-17

Another point to keep in mind is that
the sector numbers on the TRAX
display are the actual numbers on the
diskette, which we refer to in
Chapter 3 as the physical sector
numbers. The logical sector num-
bers used by the various operating
systems are usually different than
the physical sector number.

When you are in the Analysis Mode,
you can change tracks. Enter the N
command, This moves you to the
Next track, reads that track, and
does an analysis of it. When this
processing is complete, you will see
that the track number is now 01.

To access the Previous track, enter
the P command., Now you are back
to track 0.

To select a particular track, use the
R command with an operand. For
example, read track 11 (Hex) with
the command R11, Track $11 is read
and analyzed, and the resuits of the
analysis are displayed. The dis-
play should be similar to the earlier
tracks you looked at, with only the
track number and checksum bytes
changing at all, In fact on normal
undamaged diskettes there should be
little difference between individual
tracks.

As you can see, it is simple to check a
particular track that you suspect of
having an 1/0 Error. Often, how-
ever, you may not know where the
error is located, only that it exists.
.TRAX can very quickly locate ab-
normalities on a diskette. The
following exercise shows how you
verify that a diskette is free of
formatting errors.

Enter the 0 command. This will
recalibrate the disk arm and read
track 00. Now simply press V to
verify the diskette., TRAX will
verify that all sectors are readable,

TRAX ALLOWS YOU TO
INSPECT DISKETTES FOR
NON-STANDARD FORMATTING

2-18 Bag of Tricks 2

starting with the next track. If any sector can't be read, TRAX will
dump that entire track, analyze the data found and display the results.
To continue the verification process simply press V again. No errors
should be found on the diskette you are using for this tutorial until you
come to track $23. There is no such track on the Bag of Tricks 2
diskette, which is only formatted for 35 tracks.

This ends our TRAX tutorial. If you have any damaged or copy-
protected diskettes, you may wish to look at them to see the kind of
results that occur when disks are not normal. TRAX always reads the
diskette, and never writes to it.

CHAPTER 3

IN |T—By Pieter Lechner

The INIT utility has two parts, an INIT function and a COPY function.
The INIT function allows you to format a range of tracks on a 5 1/4"
floppy diskette--from a single track to an entire diskette. Both 13- and
16-sector formats are supported. Good sectors on a track can be
preserved, and all bytes in bad sectors are set to zero. This allows you
to reformat a damaged track without removing your diskette from the
disk drive.

The COPY function of INIT allows you to copy a damaged disk volume,
This function will work for any disk storage device that allows block
reads (any device ProDOS will run on). This option automatically saves
all readable parts of the disk volume., Unreadable blocks or sectors on
the original disk will be readable on the copy, but the data in those
blocks or seetors will be garbage. This feature, used in conjunction with
ZAP or FIXCAT, is very helpful in recovering damaged disks.

Another function of INIT is to reorder sectors on each track of a 5 1/4"
floppy diskette. This subject is covered in detail later in this chapter, in
the section "How Sector Skewing Can Affect Disk Performance." By
selecting the appropriate skewing you can optimize the speed with which
the operating system accesses files, especially when reading programs
from diskette into memory. INIT allows you to update your diskettes,
changing only the skewing, thereby speeding most reads from the
diskette.

INIT is self~prompting and to some extent self-explanatory. If you have

- never used INIT before, however, you should read the following three
sections on INIT parameters, copying disks, and error messages. Then
perform the tutorial at the end of the chapter. INIT documentation is
organized as follows:

3-2 Bag of Tricks 2

Section
Alphabetic Listing of INIT Parameters
Description of INIT Parameters
Copying Disks
INIT Error Messages
How Sector Skewing Can Affect

Disk Performance
An INIT Tutorial

ALPHABETIC LISTING OF INIT PARAMETERS

COPY 3-5

Drive 3-5

Operating System 3-4
Preserve Data 3-4
Sectors Per Track 3-3
Skew Direction 3-4
Skew Factor 3-4
Slot 3-5

Track, Starting 3-5
Track, Ending 3-5
Volume 3-5

SPECIFYING SECTOR ORDER

Init 3-3

DESCRIPTION OF INIT PARAMETERS

Using INIT and setting INIT parameters is accomplished by following
these general rules:

Yes/No selections:

Y,y, or left arrow Select yes
N,n, or right arrow Select no
RETURN Accept current selection
ESC Go backward in program

Menu selections:

right or down arrow Move down (or to top if at bottom)

left or up arrow Move up (or to bottom if at top)
Number Move to the numbered selection
RETURN Accept current selection
ESC Go backward in program

Input a parameter--first keystroke:
(the cursor is displayed to the right of the default value)

RETURN Accept default

left arrow Move cursor into default, allow editing
right arrow Begin editing at end of default value
CTRL-D, DELETE Edit default value, delete last character
ESC Go backward in program

Any other key Clear default, begin editing new value

Input a parameter--subsequent keystrokes:

RETURN Accept entire input field

left arrow Move cursor left within input field
right arrow Move curseor right within input field
CTRL-D, DELETE Delete character to the left of cursor
ESC Cancel input, go backward in program
Any other key Add character to input field

If you select the INIT option from the first INIT menu, you will be
allowed to set the following parameters:

SECTORS PER TRACK

This value is the number of sectors per track. Enter 13 or 16. A 16-
sector selection will not work if you have an old disk drive which has not
been updated for 16 sectors per track (the P6A ROM must be installed on
the controller card).

3-4 Bag of Tricks 2

OPERATING SYSTEM

This is the type of operating system being used on this diskette.
Enter D for DOS, P for ProDOS or Pascal, or C for CP/M. For 13 sectors
both DOS and CP/M are available, For 16 sector diskettes DOS, CP/M and
ProDOS/Pascal are available.

PRESERVE DATA

This question asks whether the data currently on your diskette
should be preserved. Enter YES or NO, If you answer YES, each sector on
a track will be read into memory, the track will be reformatted, the
original data rewritten to the track, and then the track is reread and
verified against the data. Note that this constitutes an "INIT in place"
and can result in the loss of an entire track's worth of data if your
diskette is physically damaged and can not be reformatted, For this
reason, we recommend that you make a backup before using INIT to
preserve data. The COPY option at the beginning of INIT may be used to
make the backup copy. If you answer NO, existing data on the diskette
will not be preserved and zeros will be written to each newly formatted
sector.

SKEW DIRECTION

This prompt indicates the direction of the skewing to be used. Enter
A for ascending or D for descending. Ordinarily, DOS reads sectors in
DESCENDING order while all other operating systems read them in
ASCENDING order.

OPTIMAL SKEWS FOR LOADing

Skew Skew
Operating System Direction Factor
DOS 3.2 DESCENDING 6
DOS 3.3 DESCENDING 9
ProDOS ASCENDING 2
Pascal ASCENDING 2
CP/M ASCENDING 3

SKEW FACTOR

This is the spacing placed between logically sequential sectors
during formatting. For 13-sector diskettes the values 1-12 are available
and for 16 sectors the values 1-15. Standard DOS diskettes are skewed
with 2 DESCENDING. See the section, "How Sector Skewing Can Affect
Disk Performance" for more details on this option.

Init 3-5

SLOT

The number of the slot occupied by your Disk II controller card.
Slots 1, 2, 3, 4, 5, 6, and 7 are supported, but only if a controller card is
installed there.

DRIVE

The drive number of your disk drive. The options are 1 or 2.

VOLUME NUMBER

This is the volume number that will be used to format your diskette.
Enter D for Default or any number from 0 to 254 ($00-$FE Hex). The
DEFAULT option will use the current volume number of your diskette, If
none is found or you are not preserving data, the value 254 ($FE Hex) will
be used.

STARTING TRACK

The track number upon which formatting is to start. The options
are 0-49 ($00-$31 Hex).

ENDING TRACK

The last track to be formatted. The options are 0-49 ($00-$31 Hex).
This value must be greater than or equal to the value for STARTING
TRACK. The default value is 34, the highest track number of a standard
Disk II diskette.

COPYING DISKS

The COPY option, selected from the first INIT menu, allows you to copy a
disk volume. This copy routine works with any disk device that ProDOS
can operate with (the disk that is copied does not have to be a ProDOS
disk). You may copy from and to the same drive, or you may copy from
one drive to another drive. In the latter case, the drive you are copying
to must be expecting a volume that is exactly the same size as the
volume in the drive you are copying from.

The disk that you are copying to must be formatted before selecting the
COPY option., If you are copying to a 5 1/4" floppy diskette, the
formatting can be performed by INIT using the "INIT a disk" option. Any
other type of diskette must be previously formatted in the normal manner
using some software other than Bag of Tricks 2.

3-6 Bag of Tricks 2

If you select the COPY option from the first INIT menu, you will be
guided by menus to select the source and destination drives that you wish
to copy from and to, respectively. All the drives that are connected to
your system will be listed for you to select from.

If you are copying from and to the same drive, you will be prompted
when to put the source and destination diskettes into the drive. Two-
drive copies will be performed automatically.

Whenever the INIT COPY routine encounters an error while reading or
writing, a message will be printed on the video screen. The block
number the program was trying to read or write and the error number
(ProDOS MLI error number) will be displayed.

You may abort the COPY process at any time by pressing the ESC key.

Because the primary purpose of the INIT COPY routine is to copy
damaged diskettes, the copy process will not stop when errors are
encountered. If a block on the disk being copied cannot be read, that
block on the copy will have "garbage™ data in it. These "garbage" blocks
will be readable by ZAP, so that repairs can be attempted. If the
damaged diskette is a 5 1/4" diskette, then analyzing the original with
TRAX will identify which sectors are damaged and therefore contain
garbage on the copy. For other disk devices, use ZAP and try to read all
the blocks on the original. An 1/0 error will occur when ZAP tries to
read the unreadable blocks.

INIT ERROR MESSAGES

IS THE ABOVE OK ? <YES> NO

This prompt asks whether the information in the data entry area is
correct. The options are YES and NO. NO will return the cursor to the
top line of the screen so that the data can be modified. YES causes the
program to proceed using the input parameters as they appear on the
screen,

EXISTING DATA WILL BE OVERWRITTEN
INSERT DISK IN DRIVE XX SLOT XX

This message occurs when you are initializing a diskette without
preserving data. The message indicates which slot and drive are to be
used. Any data now existing on the indicated diskette will be lost. The
return key will start the initialization process. The escape key allows
you to abort the process and return to the data entry area.

Init 3-7

DATA WILL BE PRESERVED
INSERT DISK IN DRIVE XX SLOT XX

This series of messages occurs when you are preserving data on a
diskette while reformatting one or more tracks. Any data found on the
diskette will be written back after each track has been initialized. The
return key will start the reinitialization process. The escape key allows
you to abort the process and return to the data entry area.

INITIALIZING TRACK XX-DEC XX-HEX

When not preserving data, this message indicates the track currently
being formatted.

BUILDING CATALOG 17-DEC 11-HEX

This message occurs only when formatting track 17 ($11 Hex), not
preserving data, and using DOS format. Both an empty catalog and a
VTOC (Volume Table of Contents) are constructed at this time. INIT
assumes that the diskette contains no DOS boot image, and the new VTOC
is marked to indicate this.

READING TRACK XX-DEC XX-HEX

This message occurs when preserving data and data is being read from
the indicated track. Any valid sectors found will be stored in a buffer
area for later rewrite to the newly formatted track.

WRITING TRACK XX-DEC XX-HEX

This message occurs when preserving data and data is being written to
the indicated track. After first reformatting the track, the data
previously stored in the buffer area is written back to the diskette.

* * DISKETTE WRITE PROTECTED * *

This message indicates that the write protect switch on your disk drive is
closed. Most likely this means that the notch in your diskette has been
covered. You must remove the write protect tab from your diskette if
you wish to write to it, then press RETURN to proceed. Press escape if
you don't wish to write.

* * XX OF XX SECTORS UNREADABLE * *

This message only occurs when you are preserving data. It tells you how
many sectors could not be preserved on the indicated track. If you press

3-8 Bag of Tricks 2

RETURN to proceed, the unreadable sectors will be replaced with zeroed
sectors on the newly formatted diskette. Escape will abort the reformat
and write. If all sectors on the track are unreadable, you may have an
unformatted diskette in the drive, or there may be no diskette at all in
the drive.

* * UNABLE TO FORMAT * *

This message usually indicates that there is something physically wrong
with the diskette itself. If you are not preserving data, check to make
sure that there is actually a diskette in the appropriate disk drive, and
that the drive door is closed. If this message appears while data is being
preserved, any data in INIT's buffer (preserved sectors from the
damaged track) has been lost. To avoid this possibility, it is
recommended that you first make a backup copy of a suspected damaged
diskette before attempting to fix the diskette using INIT. First format a
blank diskette using the "INIT a diskette" option, then use the "COPY a
disk" option to backup the suspected damaged diskette.

ERROR XX READING BLOCK XX

When using the COPY option, this message appears for every block of the
disk being copied that cannot be read properly. Note the block number
down for future reference. If this message occurs for every block,
something is wrong. Check to make sure the disk is properly inserted in
the source drive, '

ERROR XX WRITING BLOCK XX

When using the COPY option, this message appears for every block of the
destination disk that cannot be written properly. This message should
not occur in normal operation, and indicates that the destination disk is
not formatted properly. The COPY option requires the destination disk
to be previously formatted.

Init 3-9

HOW SECTOR SKEWING CAN AFFECT DISK PERFORMANCE

Sector skewing, or interleaving, is a term which refers to the way in
which sectors are physically arranged on the track of a disk. This
subject is relevant for all Apple Il removable and fixed disks, but
discussion here is limited to sector skewing on 5 1/4" floppy diskettes.
Sector skewing is an important topic because it has a direct impact on
the time required to perform a disk access (read or write),

When a 5 1/4" diskette is formatted, sector numbers are written in the
Sector Address Field of each sector on each track (see Beneath Apple
DOS, Chapter 3). For reasons which will become obvious later, we refer
to this number as the physical sector number., You might think that
sectors are numbered sequentially on the diskette, and indeed this is the
normal case, All standard format programs, with the exceptions of old
DOS 3.1 and DOS 3.2, lay out sectors starting with physical sector number
$0 and ending with physical sector number $F, in natural order. This is
why, if you analyze a normally formatted program with TRAX, the sector
numbers will be in order from $0 to $F. But there is no reason that
physical sector numbers have to be laid out in sequential order, and INIT
allows you to change that order if you wish to. As we will see, changing
the order can in some cases improve disk access times.

We have been careful to refer to the number in the Sector Address Field
as the "physical sector number” for good reason. An important fact to
understand is that the physical sector number is not the number that the
operating system refers to as the sector number. We refer to the number
the operating system calls the sector number as the logical sector
number. It is the logical sector number, for example, that is used by
ZAP. Read track 0, sector 1 of any disk in DOS format. Then change to
CP/M format and read the same disk. The two "sector 1"s contain
different data! This is because DOS logical sector $1 is physical sector
$D and CP/M logical sector $1 is physical sector $3.

The various operating systems translate "logical sector numbers" to
"physical sector numbers" using a sector translate table. (DOS 3.1 and
3.2 were written before the sector translate table existed, and in those
days the logical and physical sector numbers were the same.) Figure 3.1
shows a diskette with physical sectors ordered sequentially, and shows
how the operating system (DOS 3.3 in this example) references sectors by
using the sector translate table.

The astute reader can now see that there are two ways that the sector
ordering (the skewing) can be changed. The first way is to modify the
sector translate table; that is, change the assigned physical sector for
each logical sector, The second way is to write the physical sectors in a
non-sequential order on the disk.

3-10 Bag of Tricks 2

¢ ¢
1 7
PHYSICAL | 2 E
SECTOR| 3 6
4 4_D
5 5
6 C
; ; LOGICAL
READ SECTOR
3 | WRITE : 2 D
HEAD
B 2
c 9
D 1
E 8
F F
SECTOR
TRANSLATE
TABLE

Figure 341 Physical Sector Order

The first method is easier to program, but it would cause chaos if you use
a modified sector translate table to read a diskette that was written
using a standard sector translate table, and vice-versa. The second
method requires a special format program, but once the disk is formatted
it will work fine with any standard operating system. This second
method is the method INIT uses to change sector skewing.

Why is sector skewing important? To wunderstand skewing it is
enlightening to look at the series of events which occur whenever a
sector is read from or written to the diskette. Figures 3.2 through 3.4
will be used to describe what happens when a program is read from a
standard DOS diskette. To simplify this discussion, these three figures
will show the logieal sector numbers on the "diskette". In actual fact,
the physical order is that of Figure 3.1 (standard).

Shown in Figure 3.2 is the standard skewing for DOS 3.3, This
arrangement of logical sectors results from a standard physical sector
order and the DOS 3.3 sector translate table. The skew used for ProDOS
and PASCAL is different, and still a third skewing is used for CP/M. The
reason for this should become apparent as this discussion proceeds.

Init 3-14

When DOS 3.3 was designed, a skewing was chosen that optimizes the time
required to boot the disk. Since sector reads occur fairly rapidly during
the boot process and sectors are read in reverse order (sector F first,
then E, then D, etc.), a "2 DESCENDING" skew was chosen. This means
that the next lower sector is {(nearly) always two sectors away from the
last one. For example, sector 6 is two sectors after sector 7. Although
this standard DOS skewing allows disks to boot in at optimal speed, it
turns out to be a very poor skewing for doing almost anything else, like
loading or running programs (BLOAD, LOAD, BRUN, RUN),

Referring again to Figure 3.2, notice that the read/write head is
positioned where it would be immediately after reading Sector F. Let's
say we are doing a BLOAD, and the next sector we want to read is sector
E on the same track (the usual case). After RWTS (DOS's Read Write
Track Sector routine) has read all the data in sector F, control is
returned to the file manager. The file manager processes the data just
read, determines which sector must be read next, and then calls RWTS
again. In the meantime, the diskette continues to spin in the drive.
Several sectors pass beneath the read/write head before the file
manager is ready to request another read. In fact, on a standard DOS

DIRECTION OF
ROTATION

READ/WRITE HEAD

DOS 3.3
“LOGICAL”
SECTOR
NUMBERS

Figure 3.2 Logical Sector Order, Standard DOS 3.3

342 Bag of Tricks 2

disk, the next lowest numbered sector on the track (the one we most
often want to read) will be one of those sectors which has already passed
by. Figure 3.3 shows the position of the diskette relative to the
read/write head when the file manager is ready to read sector E.

RWTS will now look at each sector on the diskette until it finds sector E.
The period of time it takes to find the desired sector after the read has
been requested is referred to here as the "rotational delay" for the disk
access, Figure 3.4 shows the read/write head in position to read sector E
and identifies the rotational delay. This delay is wasted time.

You may have noticed that, had the file manager processed sector F
faster, letting only one sector pass by in the meantime, it could have
returned to the disk in time to read sector E as it passed under the
read/write head. This is apparently what the DOS designers intended
and, in fact, this is what occurs during the boot process. The example
given above, however, was for a BLOAD operation (BLOAD, LOAD, BRUN,
and RUN have similar patterns of behavior, using identical code within
DOS).

L

\ e} < READ/WRITE HEAD

“,’ '
h AT NEXT CALL TO RWTS

TO READ SECTOR E

PASSED BY
WHILE DOS WAS
PROCESSING SECTOR F

Figure 3.3 Normal Skew After Processing Sector F

Init 3-13

<«— READ/WRITE HEAD

READY TO READ
SECTORE

“ROTATIONAL DELAY"

Figure 34 Normal Skew After Rotational Delay

Obviously, unless you spend a lot of time booting disks, it would be nice
to reduce the rotational delay for other operations as well. One
solution, the first method discussed above, would be to change the sector
translate table to a more appropriate pattern., This works but has two
major disadvantages. As we discussed before, once this table is changed
any diskette created using the standard sector translate table is not
accessible using the modified table, and vice versa. For example, what
standard DOS thinks is sector 7, the modified DOS may think is sector 5.
A second disadvantage is that this scheme applies to every track on the
diskette, including the boot image of DOS on tracks 0, 1, and 2, making a
BLOAD command run faster at the expense of the time to boot the disk.

Luckily, there is another way to deal with the problem, Instead of
changing the sector translate table, the sectors can be physically
rearranged on the track such that, when run through DOS's boot-
optimized skew table, they will be in the optimal pattern for LOAD and
BLOAD. And it is possible to have different physical arrangements on
different tracks. Thus, tracks 0, 1, and 2 can be optimized for booting
and the remaining tracks can be optimized for LOADing. And disks
created in this way may be read by any DOS 3.3 with a standard sector
translate table.

3-14 Bag of Tricks 2

It turns out that during a BLOAD operation the file manager is "out to
lunch" processing the previously read sector for about the time it takes
eight sectors to pass beneath the read/write head. Thus a "9
DESCENDING" skew seems a good choice (9 DESCENDING provides eight
sectors of padding between descending sequential sectors). Figure 3.5
shows the logical arrangement of sectors on the diskette when a 9
DESCENDING skew is used.

Using this new skewing, after the file manager has finished processing
sector F, the read/write head is positioned very near to sector E. Figure
3.6 shows the position of the diskette at this time.

The actual rotational delay is less than one sector long, as shown in
Figure 3.7.

One might ask just how significant a contribution rotational delay makes
to the overall access time of a disk sector. Within about a ten percent
tolerance, a DISK II spins at 300 revolutions per minute. This means that
every sector on the track passes beneath the read/write head 300 times
per minute. If rotational delay amounts to waiting for ten sectors to go

READ/WRITE HEAD
rAFTER READING SECTOR F

Figure 3.5 Logical Order for a “9 Descending” Skew

Init 3-15

«—READ/WRITE HEAD

AT NEXT CALL TO RWTS
TO READ SECTOR E

PASSED BY WHILE
DOS WAS PROCESSING
SECTORF

Figure 3.6 9 Descending Skew After Processing Sector F

READ/WRITE HEAD

“ROTATIONAL DELAY”

READY TO READ
SECTOR E

Figure 3.7 9 Descending Skew After Rotational Delay

3-16 Bag of Tricks 2

by before reading the desired sector, as in the standard DOS skewing
with BLOAD, and 16 sectors are read on every track, the time wasted per
track amounts to:

1 min x 60 sec x 10 lost sectors x 16 reads x 1 rev
300 rev min read track 16 sector

= 2 lost seconds per track

This value is theoretical and is not completely accurate, since rotational
delay varies depending upon factors such as random placement after
moving to a new track, variations in DOS response, etc. However,
experimental measurements have shown it to be within 10 per cent of the
actual delay in most situations. If an Applesoft program which is stored
in 64 sectors on the diskette is loaded, this rotational delay amounts to
eight seconds. With the 9 DESCENDING skew this delay is reduced to less
than half a second! Obviously, the more sectors accessed the greater
the rotational delay. The chart in Figure 3.8 shows the times required to
BLOAD a DOS 3.3 binary program which is $7000 bytes in length ($70
sectors or 112 decimal). Using both experimental and theoretical
methods, the component delays to a complete disk access have been
found.

Figure 3.8 shows that rotational delay amounts to more than 50 per cent
of the time required to load the file with standard DOS 3.3 skewing! By
reskewing to 3 DESCENDING an improvement in disk access time of 43 per
cent was realized. Another interesting point is that the DOS 3,3 file
manager overhead is quite high. This high overhead has resulted in
several popular substitutes for DOS 3.3 which improve this overhead and
reduce rotational delay time. The Disk II Device Driver used by ProDOS
is extremely efficient compared to standard DOS 3.3.

One further word on skewing as it applies to non-program files is in
order. The pattern of access of a BASIC program to its data files varies
drastically from program to program. Many times an application will not
return to the disk to read the next sector for many revolutions~--it might
even allow the drive to turn itself off! In this case, sector skewing
becomes a consideration of relatively low importance. Since access can
also be affected by the number of records in each sector, it becomes
almost impossible to identify a repeating computational delay. The best
that can be said is that it does not matter much which skew is used for
data files and 9 DESCENDING will probably work as well as any other.

The table in Figure 3.9 shows the difference between the standard 2
DESCENDING skew and a 9 DESCENDING skew for typical DOS 3.3 disk
activities. It should be noted that these values may vary, because a
number of variables can affect the outcome, including hardware and even
the brand of diskette used. For this reason the reader is encouraged to
experiment with different skews, using the Bag of Tricks 2 INIT program,
to find the best one for his particular application.

Init 3-17

| 8.3 SECONDS

| 15.3 SECONDS

|27 SECONDS

FILE MANAGER [SfxI £ (2 ROTATIONAL DELAY
OVERHEAD |o[#f = (! (VARIABLE)

MOTOR — Delay waiting for disk motor to come up to speed
SEEK — Time spent moving disk arm from track to track
RWTS — Read/Write Track/Sector overhead:

Postnibble etc.
READ — Time spent reading data sectors

Figure 3.8 Comparison of Times to BLOAD a File of $7000 Bytes

3-18 Bag of Tricks 2

Time in Seconds

Activity 2 Desc. Skew 9 Desc. Skew % Difference
Boot o 66 6
Boot/load lang card 19.5 13.3 32
LOAD Basic File 8.0 5.0 38
SAVE Basic File 12.7 11.3 11
BSAVE X,A$800,L$7FFF 44.2 39.6 10
BLOAD X 31.7 17.4 45
Read Text File 7.9 8.4 -6
Write Text File 10.2 9.0 12
CATALOG 2.7 2.8 4

Figure 3.9 Timing for Typical DOS 3.3 Disk Activities

Whereas the normal skewing on a DOS 3.3 diskette is far from optimal,
ProDOS, Pascal, and CP/M appear to be optimally skewed. ProDOS and
PASCAL, which read a 512 byte block (two Apple sectors), is skewed 2
ASCENDING. This results in the most efficient read possible for a block.
CP/M reads a 1024 byte allocation unit (four Apple sectors) and is skewed
3 ASCENDING. This also seems to provide the greatest efficiency,
demonstrating that in both cases great care was taken to insure optimal
disk access. We recommend using these standard skewing offsets for
normal ProDOS, PASCAL, and CP/M operations. For particular appli-
cations, however, you should feel free to experiment with alternate
skewing patterns.

Regarding DOS 3.2, we have not made exhaustive tests. However,
current INIT and COPY programs use a 9 DESCENDING skew. A 6
DESCENDING skew seems to be optimal for loading programs under DOS
3.2, and a 2 ASCENDING skew on tracks 0-2 is optimal for booting.

Init 3-19

AN INIT TUTORIAL

The following tutorial will serve to introduce you to INIT's features,
Boot the Bag of Tricks 2 diskette (see Chapter 1 for loading instructions),
press I to select INIT, and follow along with the tutorial.

Upon entry to INIT you will be presented with a menu that gives you two
choices. Select the choice, "INIT A FLOPPY DISKETTE." The screen
will change and you will be presented with a display that looks like
Figure 3.10

INIT INIT PARAMETER ENTRY
V2.9 ESC: SELECT INIT OR COPY

SECTORS/TRACK 16_ 16

OPER SYSTEM DOS
PRESERVE DATA YES
SKEW DIRECTION DESCENDING
SKEW FACTOR 22
SLOT g6
DRIVE a1
VOLUME NUMBER DEFAULT
STARTING TRACK Jd9-DEC @9-HEX
ENDING TRACK 34-DEC 22-HEX

Press RETURN to accept default, or
enter new value.

Figure 340 INIT Parameter Screen

During this tutorial you will use INIT to format an entire diskette, so at
this point remove the Bag of Tricks diskette and place a blank diskette in
your disk drive. If you have two disk drives you may use either drive.

Find the cursor on the video screen. The cursor is a blinking underscore
which follows the first number 16. Press RETURN. By doing so you have
accepted the value 16, The default values for all the INIT parameters
are displayed in inverse. For each parameter you will be offered the
choice of accepting the default value or typing in a new value. The
cursor should now be between D and DOS, ready for your choice for the
second INIT parameter.

In this tutorial we will format a blank diskette for use by DOS 3.3.
Therefore, press RETURN to accept DOS as the operating system. The
cursor will move down again and now offers the default "Y" meaning YES,

320 Bag of Tricks 2

preserve data. But we have no data to preserve on our blank diskette, so
we instead type a capital N, The letter N replaces the letter Y. Press
RETURN to accept our edited input, and notice that the value in the
rightmost column changes to NO. (It is possible to format a blank
diskette by answering YES to this question, but it would take
considerably longer than necessary because the program must search for
data on every track. If any data is found it will be preserved, thereby
producing a copy rather than a freshly formatted diskette.)

The cursor should now be in front of the word DESCENDING on the line
reading SKEW DIRECTION. This is the value we want to use for this
example so, press RETURN to move on to the next line. The cursor is now
in front of the value 2, This is the skew factor for a normal DOS 3.3
diskette. Leave it that way for now by pressing RETURN. The next two
parameters determine the drive that will be formatted. Carefully select
the slot and drive that the blank disk is in,

The volume number displays a D for default. If we left it as D, INIT
would use volume 254 ($FE in hexadecimal). This is the value DOS 3.3
uses if you INIT a diskette without specifying a volume number.
Instead, let's set it to volume 1 by typing 1, RETURN. Then accept 0 as
the starting track, but for the ending track, type in 2 and press RETURN.

You have now selected all of the INIT parameters. Please check them,
You may have a different slot and/or drive, but assuming slot 6, drive 1,
the parameter values should now be 16, DOS, NO, DESCENDING, 02, 06, 01,
001, 00, and 02 (ignoring HEX values). You are asked "IS ABOVE OK ?" If
not, you can either select "NO" to return to the top of the parameter list
or press ESC to move to the bottom of the parameter list. Even if you
have not made any mistakes you may wish to try this to see how easily
errors can be corrected. When the parameters are correctly set, answer
YES to the "IS ABOVE OK ?" question.

Now you will see the following message:

EXISTING DATA WILL BE OVERWRITTEN
INSERT DISKETTE IN DRIVE 01 SLOT 06

The drive and slot numbers may be different, depending on the drive you
are using. After making sure the blank diskette is in the slot and drive
indicated and that the drive door is closed, you may press the RETURN
key to begin formatting. Should you discover an error at this point, you
may use the ESC key to abort. You would be returned to the top of the
parameter list at which time you could make corrections.

Assuming all is well, press RETURN to begin the format operation. You
will hear the disk arm recalibrate. Shortly thereafter you will see a
prompt line indicating that track 0 is being initialized. Then the track
number changes to 1 and 2 and the task is done. The first INIT menu will
appear on the screen.

You may have figured out that the disk you have just created is a strange
one. It has only three formatted tracks on it, where most 5 1/4"

Init 3-24

diskettes have 35 tracks or more. Interesting, but not very useful. But
now we will make that diskette more useful by going back and formatting
the rest-of it.

Select "INIT A FLOPPY DISKETTE" again. We are now going to change a
few parameters. Accept the first four values but change the skew
factor from 2 to 9. If you read the previous section, "How Sector
Skewing Can Affect Disk Performance," you will discover that the
optimal skewing for booting a DOS 3.3 diskette is 2 DESCENDING and the
optimal skewing for LOADing a DOS 3.3 file is 9 DESCENDING. When we
finish with this diskette, it will have boot tracks (0-2) that are optimum
for booting, and the rest of the diskette (tracks 3-35) will be optimum for
LOADing (assuming DOS 3.3).

After changing the skew factor, accept the slot, drive, and volume
parameters and then change the starting track to track 3. Now we are
going to do something a little tricky. A standard Disk II is designed to
work with 35 tracks, but the fact is almost all of them can read and write
at least one more track. We assume you are using a 35-track drive, and
we are going to try to format 36 tracks on it, Change the ending track
to 35. This will end parameter entry and the screen should look like
Figure 3.11.

If the screen matches Figure 3.11 (with the possible exception of slot and
drive), accept YES and then, making sure the diskette we are working
with is in the proper drive, press RETURN to accomplish the formatting.

INIT VERIFY PARAMETERS
V2.9 ESC: INIT PARAMETER ENTRY
SECTORS/TRACK 16
OPER SYSTEM DOS
PRESERVE DATA NO
SKEW DIRECTION DESCENDING
SKEW FACTOR 39
SLOT 26
DRIVE 21
VOLUME NUMBER @g1-DEC @1-HEX
STARTING TRACK 93-DEC @3-HEX
ENDING TRACK 35-DEC 23-HEX

IS ABOVE OK ? <YES> No

Type Y or N, or use arrows to select
an option, then press RETURN.

Figure 341 INIT Screen When Ready to Format Tracks 3 to 35

3-22 Bag of Tricks 2

If you watch carefully, you will see that the message "BUILDING
CATALOG" appears right after track 17 is formatted. When the operating
system is DOS and data is not being preserved, INIT puts a catalog and a
VTOC on track 17 so that the disk can be used by the DOS 3.3 file
manager. When the last track is formatted (track 35), the program will
return to the initial menu.

We now have a formatted diskette. This diskette does not contain a DOS
3.3 boot image, as would a diskette created by the DOS 3.3 INIT command.
Nor does it contain any programs (HELLO or otherwise). The VTOC
(Volume Table of Contents) has been modified to allow data to be stored
on tracks 1 and 2 (normally reserved for the DOS boot image) thereby
providing 32 extra sectors. You may, of course, place DOS on the
diskette using the appropriate program on your System master diskette
(such as MASTER CREATE). If you do this, be sure to use the FIXCAT
utility (Chapter 5) to mark tracks 1 and 2 of the diskette in use. If you
want DOS to know about track 35, you will have to modify the VTOC using
ZAP. See pages 4-2 to 4-4 of Beneath Apple DOS for a description of the
VTOC.

You are now familiar with the INIT function of the INIT program. The
COPY function of the INIT program is self-prompting and relatively easy
to use. The important thing to remember when using the COPY function
is to have on hand a previously formatted diskette. If you wish to
practice using the COPY function, perform the following operations:

1. Using a blank diskette that has never been formatted, format it in
two steps using the INIT function. First format tracks 0 through 2,
then format tracks 4 through 34, Do not format track 3! This
diskette will simulate a diskette where all sectors on track 3 have
been damaged. Label the diskette "DAMAGED."

2. Format all tracks (0-34) of another blank diskette in the normal way
using the INIT function, Label this diskette "COPY."

3. Now select the COPY option from INIT's starting menu. You will be
asked to input the source slot and drive. Make the proper selection
and put the "DAMAGED" diskette in the selected drive. You will then
be asked to select the destination drive. Make the proper selection
and put the "COPY" diskette in the drive selected.

4, With both diskettes in the proper drive, press RETURN when prompted
to do so. The "data" on the "DAMAGED" disk (it is really all zeros)
will be copied to the "COPY" disk. When the program tries to copy
track 3, it will generate error messages. COPY reads a block of data
at a time (two sectors), so eight error messages will appear, one for
each block that could not be read (blocks $18 through $1F, in this
case). The copy disk will have readable sectors in track 3, but they
will contain "garbage" data.

This concludes the INIT tutorial, By now you should realize that INIT is
a lot more than a fancy FORMAT routine. It is a valuable aid in the
process of recovering damaged diskettes, and it can be used to "speed
up" DOS 3.3 diskettes.

CHAPTER4

ZAP—By Don Worth

The ZAP utility allows you to read selected blocks or sectors from a disk
storage device. The information read in can then be examined and, if
desired, modified and written back to diskette. ZAP provides over 50
commands and is extremely powerful. However, a small subset of its
commands can be used by the novice to perform almost any operation
desired.

ZAP operates in one of five modes, selected by the user.

1.

2.

3.

4.

The DOS13 mode allows you to examine 13-sector floppy diskettes.
This mode only works for 5 1/4" floppy drives (Disk II or
equivalent). DOS files may be opened.

The D0OS16 mode allows you to examine 16-sector floppy diskettes
on 5 1/4" floppy drives (Disk II or equivalent). It will also allow
you to examine the DOS partition of a Sider hard disk. DOS files
may be opened.

The CPM mode allows you to examine 16-sector floppy diskettes
on 5 1/4" floppy drives (Disk II or equivalent). It will also allow
you to examine the CP/M partition of a Sider hard disk. CP/M
files may be opened.

The PASCAL mode allows you to examine 16-sector 5 1/4" floppy
diskettes (Disk 11 or equivalent), 3 1/2" floppy diskettes (Unidisk
3.5 or equivalent), and all hard disks that use block access.. This
includes the ProFile and Sider hard disks. Pascal files may be
opened.

The PRODOS mode allows you to examine 16-sector 5 1/4" floppy
diskettes (Disk II or equivalent), 3 1/2" floppy diskettes (Unidisk
3.5 or equivalent), and all hard disks that use block access. This
includes the ProFile and Sider hard disks. ProDOS files may be
opened.

ZAP defaults to the ProDOS mode. ZAP cannot be used to examine most
copy-protected disks or disks that use non-standard formatting.

4-2 Bag of Tricks 2

For the user's protection, ZAP defaults to a write protected mode. This
means that no matter what you do while experimenting with ZAP, you
won't write to or otherwise damage your diskette. To leave the write
protected mode you must issue the UNLOCK command. This feature is
intended to assist novices while they are learning ZAP as well as to
provide an added security level against accidental damage to diskettes.

I£ you have never used ZAP before, you will want to skip over the
reference materials at the beginning of this chapter and read the
sections titled "ZAP--A Functional Description" and "A ZAP Tutorial."
ZAP documentation is organized as follows:

Section Page
Alphabetic Listing of ZAP Commands 4-3
ZAP Command Descriptions 4-4
ZAP Error Messages 4-19
ZAP--A Functional Description 4-24
A ZAP Tutorial 4-H

ZAP DEFAULTS TO THE LACKED VodDE
TO PREVENT ACCIDENTAL WRITING

Zap 4-3

ALPHABETICAL LISTING OF ZAP COMMANDS

The following list presents the ZAP commands in alphabetical order
followed by the page number where a complete description of each
command may be found.

4-7 LOCK 4-10
% 4-6 LOG 4-14
%% 4-6 LOOP 4-18
& 4-8 LSWAP 4-1§
* 4-15 MACROS 4-15
() 4-14 MSWAP 4-15
+[EXP] 4-5 N 4-6
-[EXP] 4-5 NOLOG 4-14
/ 4-15 NOTE 4-13

: 4-7 NOWRAP 4-11
< 4-17 0 4-8

= 4-16 OPEN 4-12
> 4-17 P 4-6

? 4-17 PASCAL 4-11
Q@ 4-17 PR# 4-13
ASCII 4-10 PRINT 4-13
AT 4-17 PRODOS 4-11
BLOCKS 4-4 R 4-5

CAT 4-19 RLEN 4-12
COL 4-9 S 4-4
CLOSE 4-12 SET 4-7
COMPARE 4-9 STATUS 4-19
CPM 4-10 SVOL 4-11
DOS13 4-10 SWAP 4-7
DOS16 4-10 TRACE 4-16
DUMP 4-13 TRACKS 4-4
END 4-19 UCASE 4-9
HELP 4-18 UNLOCK 4-10
1 4-17 VvV 4-8
IDUMP 4-13 VTOC 4-19
IMAGE 4-10 WHERE 4-12
L 4-8 WRAP 4-11
LABELS 4-15 WRITE 4-5
LCASE 4-9 X 4-8

4-4 Bag of Tricks 2

ZAP COMMAND DESCRIPTIONS

DISK 1/0 COMMANDS

s[ExP1],[EXP2] ..or.. S[EXP1] ..or.. S,[EXP2]

The § command sets the slot and/or drive for subsequent disk accesses.
The slot and drive number are initially set to those used to boot Bag of
Tricks 2. If you want to change them you may use this command. The
first expression, [EXP1], is the slot number and may be relative or
absolute, ranging in value from 1 to 7. If you specify a slot that does not
have a disk drive connected, the error message "NOT A DISK" will result.
[EXP2] is the drive number, 1 or 2, and may be relative or absolute (for
example, S,-1 is valid if the current drive is 2). If [EXP1] is omitted, the
current slot remains unchanged. If [EXP2] is omitted, drive 1 is assumed.
You may not change slots or drives with a file open as this would confuse
ZAP.

NOTE: Information about the capacity of the disk drives is stored by
ZAP. This information is slot-dependent. When ZAP is booted, it
assumes 35 tracks and 280 blocks for each device. When a command is
invoked that reads the catalog or directory, such as CAT or PRODOS, ZAP
will change a default value to the value found in the directory (or the
VTOC, in the case of DOS). ZAP will not change the current value if it is
not the default value or if the directory or VTOC does not exist. Note
that the value on the disk may not be accurate, as in the case of a 35-
track diskette operating in a 40-track drive. The user can always
manually set the drive capacity using the TRACKS or BLOCKS command.
The STATUS command will display the current value for tracks or blocks
for the current slot.

TRACKS[EXP]

Set the number of tracks per drive for the current slot to [EXP]. The
maximum value for tracks per drive is 50, Setting this value will also
affect the number of blocks per volume for the current slot (eight blocks
per track is assumed).

BLOCKS[EXP]

Set the number of blocks per volume for the current slot to [EXP]l. The
maximum value for blocks per volume is 65,535, Setting this value will
also affect the number of tracks per drive for the current slot (eight
blocks per track is assumed).

Zap 4-5

+{EXP] ...or... -[EXP]

Move the buffer cursor to a new offset, computed by adding or
subtracting the value of the expression, [EXP], to or from the current
buffer offset. If the result moves the cursor outside the current buffer,
ZAP will read the appropriate new sector or block into the buffer. For
example, if the mode is DOS16 and command +256. is issued, ZAP will read
the next sector on the disk (or in the file) and position the buffer cursor
to the same offset as before. The command +257. would position the
cursor in the next sector at one byte beyond its original position. Values
for [EXP] may be from -8388608. to +8388607.. If operating in a
track/sector mode and the newly computed sector is past the end of the
current track, the track number will be modified as well. Likewise,
wraparound will occur at the beginning and end of the disk or file (if in
the WRAP mode).

R[EXP1],[EXP2] ..or.. RIEXP1] ..or.. R,[EXP2] ..or.. R

NO FILE OPEN, TRACK/SECTOR MODE: Read the track and sector
indicated by [EXP1] and [EXP2] respectively. If the sector number is
omitted, as in the second format shown above, zero is assumed. If the
track number is omitted, as in the third format, the current track number
is assumed. If both are omitted, the current track/sector is reread.
[EXP1] and [EXP2] may be either absolute or relative. If relative,
wraparound will occur at the beginning/end of the disk or file (if in
WRAP mode).

NO FILE OPEN, BLOCK MODE: Read the block indicated by [EXP1]. If
[EXP2] is given, it is ignored. If no operand is given, the current block is
reread. [EXP1] may be either absolute or relative. If relative,
wraparound will occur at the beginning/end of the disk or file (if in
WRAP mode).

FILE OPEN: If a file is open, [EXP1] represents the record number and
[EXP2] represents the byte offset in that record. The record's position is
computed by multiplying the record length specified by the RLEN
command by the record number given, resulting in the absolute byte
offset into the file.

WRITE[EXP1],[EXP2] ..or.. WRITE[EXP1l ..or.. WRITE,[EXP2] ..or..
WRITE

NO FILE OPEN, TRACK/SECTOR MODE: Write the contents of the current
sector buffer out to the disk at the track and sector indicated by [EXP1]
and [EXP2] respectively. If the sector number is omitted, zero is
assumed. If the track number is omitted, the current track is assumed.
If both are omitted, as is usually done, the buffer is written to the
current track/sector. As with the R command, [EXP1] and [EXP2] may be
absolute or relative.

4-6 Bag of Tricks 2

NO FILE OPEN, BLOCK MODE: Write the current block buffer out to the
disk block indicated by [EXP1]. If [EXP2] is given, it is ignored. If no
operand is given, as is usually done, the buffer is written to the current
block. As with the R command, [EXP1] may be absolute or relative.
FILE OPEN: If a file is open, [EXP1] and [EXP2] indicate the record and
byte offset. In this case, the data in the buffer is written to the sector
or block containing this byte.

NI EXP] ..or.. N

NO FILE OPEN: Move to the next block or sector. If [EXP] is used, add
the value of [EXP] to the current block number or sector number, then
read it. If no [EXP] is given, a value of +1 is assumed. [EXP] may be
any absolute value from -8388608. to +8388607.. Wraparound will occur at
the disk or file boundaries (if in WRAP mode).

FILE OPEN: If a file is open, the N command reads the next record in the
file,

P[EXP] ..or.. P

NO FILE OPEN: Move to the previous block or sector. If [EXP] is used,
subtract the value of [EXP] from the current block number or sector
number, then read it. If no [EXP] is given, a value of 1 is assumed (back
up one sector). [EXP] may be any absolute value from -8388608. to
+8388607.. Passing over a track boundary will result in moving to the
previous track. Wraparound will.occur at the disk or file boundaries (if
in WRAP mode).

FILE OPEN: If a file is open, the P command reads the previous record in
the file.

%

Indirect read command. Used only in absolute mode (no open file). The
% command looks in the sector buffer at the current offset for a 2-byte
block number or a 2-byte track/sector pair (depending on operating
system mode), then reads the indicated block or sector into the buffer.
This command is handy when following a chain of pointers, such as in a
catalog, a directory, or a track/sector list.

% %

ProDOS indirect read command. Used only in absolute mode (no open
file). The %% command looks in the sector buffer at the current offset
for the low byte of a 2-byte block number and looks at the current offset
plus 256 bytes for the high byte of a 2-byte block number, then reads the
indicated block into the buffer. This command is designed for reading
blocks from a ProDOS index block.

Zap 4-7

BUFFER COMMANDS

[EXP]

Move the buffer cursor to the offset given by [EXPl. [EXPl may range in
value from zero to the end of the buffer ($FF (255.) or $1FF (511.)).

#[EXP]

The # command selects a buffer (from $0 through $F) to be displayed and
manipulated. The expression may be absolute or relative (for example,
#+1 is valid as long as you do not exceed the valid buffer number range).

SWAP

ZAP buffers are 512 bytes long. The SWAP command modifies the buffer
by swapping the first 256 bytes with the last 256 bytes. In track-sector
modes (DOS, CP/M), only 256 bytes are displayed at a time, and the SWAP
command has the effect of making the "invisible" part of the buffer
visible., The SWAP command is most useful when transferring data
between blocks and sectors.

:[STR] ..or.. :

Store command. The colon command replaces the contents of the buffer
at the buffer cursor location with the string operand. The string may be
hex or character. If no string is given, then the previous store string (if
any) is used. The store string is the last operand of any buffer modify
command (:,SET,&,0,X). This allows multiple stores of the same string
without having to retype the string over and over again. The colon
command is the only ZAP command which may follow another on the line
without an intervening blank. This allows a construction similar to the
Apple Monitor (3E:00, for example).

SET[STR] ..or.. SET

Multiple store command. The SET command will set the remainder of the
buffer (from the buffer cursor on) to the specified string. If no string is
given, the previous store string is used. For example, you can set the
entire buffer to zero by moving the buffer cursor to offset 0 and issuing
a SET0 command. If a string of more than 1 byte is given, it will be
repeated in the buffer until there is not enough room left to store the
full length of the string again.

4-8 Bag of Tricks 2

&[STR] ..or.. &

Logical AND command. The ampersand command will perform a logical
AND function between the given string and the contents of the buffer at
the buffer cursor location. If no string is given the last store string is
used. For example, &7F will turn off the MSB of the byte at the current
buffer cursor location.

O[STR] ..or.. O

Logical OR command. The O command will perform a logical OR function
between the given string and the contents of the buffer at the buffer
cursor location. If no string is given the last store string is used. For
example, 080 will turn on the MSB of the byte at the current buffer
cursor location.

X[STR] ..or.. X

Logical Exclusive OR command. The X command will perform a logical
exclusive OR function between the given string and the contents of the
buffer at the buffer cursor location. If no string is given the last store
string is used. For example, X01 will make an odd byte even or an even
byte odd.

SEARCH AND COMPARE COMMANDS

L[STR] ..or.. L

Look command. The L command searches the buffer for the given string
starting with the byte following the buffer cursor, and, if an occurrence
of the string is found, the buffer cursor is positioned to the first byte of
the matched string. If an occurrence cannot be found in the buffer, the
next block or sector is read and also searched. This continues until a
match is found or until the search wraps around, back to its starting
location (if in WRAP mode). Searching can be done in absolute mode (no
file open) when the entire disk will be searched, or in file mode (file
open) when just the file is searched. Matches can occur even where the
string is partly in one block or sector and partly in another. If no string
operand is given, a previous search resumes using the current comparison
string (from the last L or V command)., Thus, you may start a search,
and, after finding an occurrence, look for further occurrences by typing
L. The search may be interrupted at any time by typing any key.

VI[STR] ..or.. V

Verify command. The V command verifies that the string under the
buffer cursor matches the given string. If it does not, an error message
is displayed. If no string is given, the current comparison string is used.

lap 49

The V command can also be used to delimit the bounds of a search.
Position to the end point of the search and type a V command with the
search string to be used. Position to the start point of the search and
type L without entering the search string. The look command will use
the search string and search boundary established by the previous V
command.

COMPARE[EXP]

The COMPARE command compares the contents of the current buffer to
another buffer, from the buffer cursor location to the end of the buffer.
[EXP] is the buffer number of the buffer to be compared to the current
one. Using the # command (described previously) you can read two
blocks or sectors into two different numbered buffers (one into 0 and one
into 1, for example). You can then type COMPAREL while you are
displaying buffer 0, and this command will compare the two images, byte
by byte. If they do not match, the buffer cursor is left over the first
byte which differs and an error message is displayed.

OPTION SWITCH COMMANDS

COL

Changes the display mode. If in 80-column mode, COL switches to a 40-
column display. If in 40-column mode, COL switches to an 80-column
display. If your computer does not have 80-column capability, this
command has no affect.

NOTE: If you have an Apple Il Plus with an 80-column card, ZAP will
recognize it if the ProDOS loader sets the bit indicating 80-column
capability in the MACHID byte (see Beneath Apple ProDOS, Chapter 8).
The program will still need modification to work with most non-Apple 80~
column cards. See the Advanced Tutorial in Chapter 6, "Modifying ZAP
for Non-Apple 80-Column Cards".

LCASE

Sets the ASCII translation on the right side of the hex/ASCII display so
that lower case characters will be printed "as is." The default setting
for this switch is with LCASE on. LCASE only has meaning when the
ASCII switch is in effect.

UCASE

The opposite of LCASE. UCASE instructs ZAP to translate lower case
characters to upper case for display on the right half of the screen.
UCASE may be useful to owners of Apple II and Apple II Plus computers
that do not have the lower case capability. UCASE only has meaning
when the ASCII switch is in effect.

4-10 Bag of Tricks 2

IMAGE

This command only works in the 40-column mode. It sets the ASCII
translation on the right side of the screen so that minimal translation is
done. Inverse and flashing characters appear as is and only control
characters are translated out. While IMAGE mode is in effect, UCASE
and LCASE modes are ignored. The default mode is ASCII, not IMAGE.

ASCII

The opposite of IMAGE mode. UCASE or LCASE translations are done and
non-printing control characters are translated to periods. Flashing and
inverse video characters are translated to normal. ASCII mode is the
default.

LOCK

Sets ZAP into LOCK mode. While in LOCK mode, ZAP will not allow you to
write to the disk. LOCK mode is the initial default,

UNLOCK

Resets LOCK mode allowing ZAP to write to the disk.

DOS16

Informs ZAP that the operating system is DOS and that the disk is
organized into tracks of 16 sectors (32 sectors for Sider large volumes).
ZAP uses this information when selecting the proper sector skewing
table, setting up its RWTS (Read/Write Track/Sector) package for 16-
sector I/0. When setting DOS16 mode, ZAP erases the trace table,
changes the block or track/sector information for each buffer to
question marks, and reads the first catalog sector into the current
buffer. Subsequent use of the OPEN command will assume a standard
DOS catalog is on the disk.

DOS13

Informs ZAP that a 13-sector DOS diskette is in the drive. RWTS is set
for 13-sector I/0. When setting DOS13 mode, ZAP erases the trace table,
changes the block or track/sector information for each buffer to
question marks, and reads the first catalog sector into the current
buffer.

CPM

Informs ZAP that the operating system is CP/M and that the disk is
organized into tracks of 16 sectors (32 sectors for Sider CP/M volumes).

Zap 411

CP/M sector skewing is used. When setting CP/M mode, ZAP erases the
trace table, changes the block or track/sector information for each

buffer to question marks, and reads the first directory sector into the
current buffer,

PASCAL

Informs ZAP that the operating system is Pascal and that the disk drive is
a block device. When setting Pascal mode, ZAP erases the trace table,
changes the block or track/sector information for each buffer to
question marks, and reads the first block of the directory into the
current buffer.

PRODOS

Informs ZAP that the operating system is ProDOS and that the disk drive
is a block device. When setting ProDOS mode, ZAP erases the trace
table, changes the block or track/sector information for each buffer to
question marks, and reads the first block of the volume directly into the
current buffer,

WRAP

Sets ZAP into WRAP mode. This is the default initial state. While in
WRAP mode, ZAP will allow wraparound when an attempt is made to
read/write beyond the end or before the beginning of a disk or a file.

NOWRAP

Turns off WRAP mode. When an attempt is made to read/write beyond
the end of a disk or an open file (or before the beginning of one), an
error message is displayed. This command is useful when it is necessary
to scan from the current location to the end of a file or disk, without
wrapping back to the beginning again,

SVOL[EXP]

Has no effect unless the current slot contains a Sider disk controller. If
a Sider hard disk is on line, then the volume of the current operating
system will be set to [EXP] as follows:
1. DOS: Selects the volume indicated by [EXPl. Small volumes are
numbered first, then large volumes.,
2. PASCAL: Selects the unit number indicated by [EXP]. Normally the
available units are 04, 05, 0B, and 0C.
3. PRODOS: Has no effect. Use drive number to select between the two
ProDOS volumes on the Sider.
4, CP/M: Selects the volume indicated by [EXP].

4-12 Bag of Tricks 2

FILE COMMANDS

OPEN[STR] ..or.. OPEN

Opens the file named by [STRl. If no string is given, the last file opened
is reopened. If a file is already open, it is closed, and the new one is
opened. ZAP searches the directory (based upon the current operating
system mode) for the file name string, The file name string may be
given in hex or character (the MSB is ignored). Except for ProDOS files,
if the last character of the name is an equal sign (=), ZAP will select the
first file name in the directory which starts with the string. ProDOS
files must be fully identified, starting with the volume directory name.
A beginning slash is optional, but the name must not end in a slash.
Subdirectories may be opened in the same manner as data files. The
volume directory cannot be opened (use CAT). For example, "OPEN
ASM/SOURCE/MATH" opens the file "MATH" in the subdirectory
"SOURCE" on the volume "ASM" (which must correspond to the current
slot and drive). "OPEN /ASM/SOURCE" opens the subdirectory "SOURCE".
Files of any size can be opened if they are DOS, Pascal, or ProDOS files.
If a CP/M file that is more than 256 sectors long (65,536 bytes) is opened,
only the first 65,536 bytes of the file can be accessed. After opening the
file, ZAP reads the first data block or sector into the buffer. The trace
table is cleared and the buffers are marked empty. Note that CPM and
PASCAL file names which do not have a suffix (such as .CODE or .SYS
etc.) must be specified with a trailing period. For example, a file named
GORF should be given as OPEN"GORF." or a "FILE NOT FOUND" message
will occur,

RLEN[EXP]

Sets the record length for use with the R (read) and WRITE commands.
The OPEN command sets the initial record length to the size of the buffer
(256 or 512 bytes). The record length is multiplied by the relative record
number given on the R or WRITE command to compute the relative byte
offset into the file. The record length may range in value from 1 byte to
the length of the file in bytes. Note that changing the record length will
affect the N and P commands also.

CLOSE

Causes ZAP to exit file mode and return to absolute mode. The RSA
(Relative Sector Address) or RBA (Relative Block Address) is replaced on
the status line by Track/Sector or Block Number, respectively.

WHERE

When in file mode, the WHERE command works identically to the STATUS

command. If no file is open (absolute mode), the WHERE command will
search each file in the disk's directory to determine whether the current

Zap 4-13

buffer is in a file. If such a file is found, it is opened, the sector is
reread, and a STATUS command is invoked to display the location of the
sector in the file. The WHERE command is particularly useful in
identifying the file containing a sector with an 1/0 error.

PRINTER COMMANDS

PR#[EXP]

Sets the slot number to be used with an optional printer. The default is
1. If a printer controller card is plugged into this slot, you may issue the
commands listed below. The printer slot in use is displayed on the status
line (the top line of the display).

PRINT

Copies the entire screen image to your printer. This command may be
issued to print any ZAP screen image, including the macro table display,
the label table display, and the help screens. If your printer echoes
what it is printing on the screen, this command may not work properly
and the DUMP command below must be used to dump out the buffer
contents. Note that some printer interface cards, such as the Apple
Serial Interface Card, allow you to inhibit print echoing.

DUMP[EXP] ..or.. DUMP

Dumps the current buffer in hex and ASCII onto the printer. A status
line is also printed. The ASCII translation used is affected by the
ASCII/IMAGE/UCASE/LCASE switches. If an expression is given, it
represents the number of consecutive sectors, blocks, or records to be
dumped. If no expression is given, only the current buffer is dumped.
The 80-column format will be used for the dump, regardless of the
current video mode.

IDUMP

Disassembles and prints the 6502 instruction equivalents for the data in
the buffer, starting at the current buffer cursor location and proceeding
to the end of the buffer. A status line is also printed.

NOTE[LINE]

Prints a comment on the printer. The remainder of the line, following
the command NOTE, is printed on the printer as is (no other ZAP
commands may be issued on the same line following a NOTE command).
NOTE is useful to label a listing, For example: NOTE THIS IS A PATCH
TO DOS3.3 TO ALLOW FOUR DRIVES ON ONE SLOT.

4-14 Bag of Tricks 2

LOG

Turns on LOGging mode. While in effect, the printer slot number on the
status line is displayed in inverse video. Each time ZAP reads or writes a
sector, a status line is printed on the printer. Also, any time a store
(colon) command is invoked, a status line and the "before" and "after"
hex strings are printed. In this way, ZAP keeps a complete record, or
"audit trail", of your activities, allowing you to determine later what was
done, and, if necessary, "back out" bad changes. Note that LOG mode
produces a lot of output should you use the Look command, OPEN, or
WHERE (since many sector reads are done). For this reason, it is
recommended that LOGging be turned on only when absolutely necessary.

NOLOG

Turns off LOGging mode. This is initially the default mode and is
indicated by a normal video representation of the printer slot on the
status line.

MACRO COMMANDS

(INAMEI[TEXT])

Macro definition, The entire definition must be enclosed in parentheses
and may not contain another macro's definition (no embedded
parentheses). The first word is used as the name of the macro itself,
and may be of any length and contain any character or number. If a
macro by this name already exists, the old macro is replaced with the
new definition. Care should be used in choosing macro names to avoid
conflict with existing ZAP commands, label variables, or other macros.
LAP gives precedence to macros over its own commands, so, if you really
wanted to, you could redefine a ZAP command to do something else. For
example, (HELP NOTE THERE IS NO HELP FOR YOU). In this example, the
true ZAP HELP command cannot be accessed until this maecro is deleted.
For this reason, (WRITE UNLOCK WRITE LOCK) would not work, since, in
redefining the WRITE command, you have denied yourself further access
to the original. The [TEXT] is separated from the name of the macro by
one space and may be of any form as long as it does not contain a closing
parenthesis character. When naming macros, another consideration
involves the way ZAP scans for commands. If you were to define a
macro called "GO" and later define a macro called "GORF", one might
expect that invoking the GORF macro would actually produce the GO
macro followed by the operand "RF". ZAP will prevent this kind of thing
from happening by deleting GO when you define GORF, It is still possible
to run into trouble, however, if you define a macro whose name is a
shortened version of a label variable or ZAP command., For example, WR
is not a good name for a macro since it would prevent you from getting
at the ZAP WRITE command.

Zap 415

/INAME]

The / command deletes the macro whose name is FNAME] from the macro
table.

MACROS

Displays all currently defined macros on the screen in place of the
hex/ASCII dump. To redisplay the hex/ASCII, press RETURN.

MSWAP

Exchanges the contents of the current buffer with those of the macro
table. The buffer must contain a valid macro table, previously created
by the MSWAP command, or it must be precleared to zeroes (use the
command SET0--this creates a macro table image which contains no
macros). The table data should not be modified in any way while it is in
the buffer as this will result in a "BAD DATA FORMAT" error message.
Thus, to save the current contents of the macro table, you could use the
following commands:

SET0 MSWAP UNLOCK WRITE1L MSWAP
This would preclear the buffer to zero, swap this "empty" macro table
with the one you want to save, write the table to be saved to the disk
(block 1), and then swap it back into the macro table. To reload the
macro table, you would use the following commands:

R1 MSWAP
The MSWAP command can only be used when in a block mode (PRODOS or
PASCAL) because the MACRO table is 512 bytes long.

LABEL COMMANDS

LABELS

Display all currently defined labels on the screen. To return to the
hex/ASCII display, press RETURN. See the later section "ZAP--A
Functional Description" for a further discussion of labels.

The asterisk is a pre-defined label which always contains the position
following the last read or write operation.

4-16 Bag of Tricks 2

=[NAME]

Define a new label (or redefine an old one) by setting it to the current
position. Up to 10 labels (including *) may be defined. The name must
be one to eight characters or numerals in length.

/INAME]

Delete a label from the table to make room for new ones. Note that this
is the same as the delete macro command. You may not delete the *
label.

[INAME]

Typing a label is similar to the R command. ZAP will read the block or
sector associated with the label whose name is [NAME], then position the
cursor at the offset associated with [NAME].

INAME]I+[EXP] ..or.. [NAME]-[EXP]

Compute a location which is the sum (or difference) of the location
associated with the label variable whose name is [NAME] and the
expression [EXP]. ZAP then reads the resulting block or sector and
positions the cursor to the resulting offset.

LSWAP

Exchanges the contents of the label table (not including the * label) with
those of the current buffer. This command works almost identically to
the MSWAP command, described in the section on macros. The buffer
must contain a valid label table image, previously LSWAPped, or it must
be set entirely to zeroes. The label table may be saved in exactly the
same way as is the macro table. Because the label table is less than 256
bytes long, the LSWAP command will work in any operating system mode.
Note that it is possible using LSWAP for labels to become defined which
are not within the bounds of a previously OPENed file or which describe
locations which do not exist on the current disk drive. If these labels
are referenced, error messages will result.

TRACE COMMANDS
TRACE

This command displays all of the trace entries and indicates which is
current. Press RETURN to recover the hex/ASCII display.

Zap 417

Back up one trace table entry. If no more previous entries exist, an
error message is printed.

>

Move forward one trace table entry. If no more future entries exist, an
error message is printed.

MISCELLANEOUS COMMANDS

AT[EXP] ..or.. AT

The AT command is similar to the +[EXP] command listed under DISK I/0
COMMANDS and the [NAME] or [NAME]+[EXP] commands listed under
LABEL COMMANDS except that it will not actually read anything. Only
the buffer tag information for the current buffer is changed, and it is
changed to the value of [EXP 1. The buffer tag is the block or
track/sector {or relative record) information associated with the buffer,
which is displayed on the command line at the top of the display. Note
that if [EXP] starts with a label, it will contain block or track/sector
information. See the later section "ZAP--A Functional Description" for a
further discussion of the AT command.

a

The @ character is an alias for the AT command.

?[EXP]

The calculator command. The value of the expression is printed on the
command line in hexadecimal and decimal. The expression may be any
valid ZAP expression, including those containing label variables, ZAP
expressions may contain addition and subtraction operations.

1

Instructions command. ZAP disassembles as many lines of 6502 instruc-
tions as will fit on the screen. The disassembly begins at the current
buffer cursor location. If the end of the buffer is reached, disassembly
stops and the buffer cursor is positioned to $00. The buffer cursor is
normally left so that a subsequent I command will pick up where a
previous one left off. Pressing the TAB key (CTRL-I) will continue the
disassembly. Pressing RETURN will return to the hex/ASCII display.

4-18 Bag of Tricks 2

LOOP[EXP1],[EXP2] ..or.. LOOP[EXP1] ..or.. LOOP,[EXP2] ..or.. LOOP

The LOOP command can be used to cause ZAP to repeatedly execute all or
part of the command line. Only one loop may be in effect at a time
(nested loops are not permitted and will result in unpredictable
behavior). LOOP with no operands will repeat the entire command line
that precedes it until an error occurs or until the user presses the
keyboard. If [EXP1] is given, it is used to count the number of times the
loop is to be performed. If [EXP2] is given, it is used to identify the
command at which to start looping. The value of [EXP2] identifies the
character in the command line where the looping is to start. The first
character is numbered 0 and blanks are counted. Caution is required if
any macro calls are made within the LOOP. See the later section "ZAP--
A Functional Description" for a further discussion of the LOOP command.

HELP[EXP] ..or.. HELP

The HELP command provides you with a quick, on-line reference to all of
ZAP's commands. There are five screens of help information available,
which can be called up by giving a screen number as an expression (1
through 6). If no expression is given, the first help screen (screen 1) is
displayed. Press the TAB key (CTRL-I) to go on to the next HELP screen.
Press the RETURN key to return to the hex/ASCII display.

Zap 419

VTOC

If the operating system mode is DOS16 or DOS13, the VTOC command will
read track $11, sector $00, the DOS Volume Table of Contents. If the
operating system mode is PRODOS, the VTOC command will read the block
containing the Volume Bit Map (usually block 6), Issuing the VTOC
command when in other operating system modes will result in a "NO
VTOC" message.

CAT

The first sector of the catalog or the first block of the volume directory
is read. ZAP expects the catalog or directory to be in its normal position
on the disk. If what appears to be a normal catalog or directory is
found, ZAP sets the volume size (in tracks or blocks) to the information
found in the directory or VTOC. However, if the volume size has already
been set by the user with a TRACKS or BLOCKS command, ZAP will not
change the volume size,

STATUS

The STATUS command displays on the video screen several pieces of
information about current ZAP status. The information presented varies
somewhat depending on whether or not a file is open and on the type of
operating system mode currently in effect. To exit the STATUS display,
press the RETURN key.

END

The END com nand exits ZAP and returns to the Bag of Tricks 2 main menu
screen.

ZAP ERROR MESSAGES

WRITE PROTECTED

Either ZAP is in LOCK mode and you have attempted to write to the disk
or your disk is really write protected. If you still want to write, verify
that ZAP is not locked by entering the UNLOCK command and check your
diskette's write protect notch to make sure it is not covered. Then
enter the WRITE command again.

DRIVE ERROR

Something is seriously wrong with the block or sector ZAP is trying to
read or write, Possible problems might be:

4-20 Bag of Tricks 2

The disk drive door is open or there is no diskette in the drive

The part of the disk you are trying to read has been damaged in
some way

You are trying to read/write a 13 sector diskette but you told ZAP
that it was a 16 sector diskette.

If you were trying to read, try the command again., If it still doesn't
work, try reading from another part of the disk. If the data in the block
or sector is not important, set the buffer to zeros and WRITE it., If you
get the same error, you may need to use the INIT utility to reformat the
affected part of the diskette.

READ ERROR -- See DRIVE ERROR.

NO VTOC

The VTOC command is not valid when in the CPM or PASCAL operating
system modes.

SYNTAX ERROR

The command or its operands are invalid or improper in format.
Remember that operands must follow the command with no intervening
blanks. Watch out for macros or label variables defined by you which
might conflict with each other or with ZAP commands.

WARNING: BUFFER CHANGED

ZAP is warning you that, since you read the block or sector into the
buffer, you have made changes to it. If you don't care and want to
throw these changes away, retype the command you just entered.
Otherwise, WRITE the buffer first,

NOT FOUND

The file you attempted to OPEN was not found in the disk's directory
(catalog), or contains no data. Remember that ProDOS filenames must
be fully qualified (include the volume name). This message also appears
if you attempt to delete a non-existent macro or label. Use the MACROS
or LABELS command to find out what your macros and labels are named.

NO FILE IS OPEN

Several commands are not valid unless a file is open (for example RLEN,
CLOSE, etc.) Use the STATUS command to find out what is going on.

Zap 4-21

LINE OVERFLOWED

During macro replacement the total length of the command line exceeded
256 characters. No further processing can be attempted. Check your
macros to make sure none of them invokes itself, thereby infinitely
filling up the command line.

SCAN ENDED

A Look command which was originally invoked at the current disk
location has returned to that location after finding no (further)
occurrences of the string.

NOT IN FILE

You have attempted to read/write a block or sector which is not
contained by the currently OPEN file (this is hard to do but not
impossible). If you must access the block or sector, CLOSE the file first.,
EMPTY BUFFER

Some commands are not valid for buffers which are marked "empty".
Notably, you may not make any references which require a current block,
track/sector, RBA or RSA value. The commands, R+3 or N or P would be
examples of this.

NUMBER TOO BIG

The value of an operand expression exceeds the valid range for that
operand. This could happen, for example, if you tried to read track 53.
NUMBER TOO SMALL

The value of an operand expression is too small. Most likely, you have
given a negative number or zero and this is not valid. Drive numbers, for
example, must be 1 or 2, not 0 or -197.

TABLE FULL

Either a macro definition or a label definition has been attempted and

ZAP's corresponding table can not accept any more new entries. Delete
an old entry to make room for your new one and try again.

4-22 Bag of Tricks 2

MATCH

This is not really an error but this message will stop execution of
multiple commands. A Look, Verify, or COMPARE command was issued
and the strings matched. This message will be suppressed if any other
commands follow the Look or COMPARE command on the command line,

COMMAND HALTED

This indicates that ZAP was processing commands but you interrupted it
by pressing a key on the keyboard, It is not clear how far ZAP got with
your command(s) before it was stopped.

END OF TRACE

You have attempted to move forward in the trace table but there are no
more entries or you have attempted to back up and their are no more
earlier entries. Use the TRACE command to view the entire trace table,

BEYOND BUFFER

You attempted a store operation with a string which would have run off
the end of the buffer or you have attempted to position the buffer cursor
outside the normal buffer range,

MISSING OPERAND

A command was entered which requires operands (such as S, set
slot/drive) but no operands were given. The command does not provide
a default value.

NOT A DISK

An attempt was made to set the disk slot number {with the S command)
to a slot which does not contain a valid disk controller card. ZAP only
recognizes standard or well known disk devices. If ZAP does not
recognize your disk drive and you think it should, please contact Quality
Software.

CLOSE FILE FIRST

Some commands are not meaningful when a file is open because they
would cause ZAP to read blocks or sectors which are not within the file,
Examples of these are VTOC and CAT. Likewise, switching drives with a
file open would cause ZAP to assume the file existed in the same location
on the other drive, an unlikely expectation at best. For this reason, you
must CLOSE any open file before switching drives.

Zap 4-23

BAD TRK/SEC PTR

Although ZAP attempts to validity check all track/sector values you give
it and issue appropriate messages (such as NUMBER TOO BIG, etc.) it is
possible, during an OPEN for example, that a bad track/sector pair or
block number will be used to perform a read operation. In this case the
message appears. It usually means that the data in the directory is bad
(maybe you have the wrong operating system)., Hopefully, you will not
see this message very often.

DOES NOT MATCH

The result of a Verify or COMPARE command is that the strings or buffers
do not match. In the case of COMPARE, the buffer cursor indicates the
location of the mismatch.

OFF END/NO WRAP

An attempt has been made to move past the bounds of the disk volume or
an open file and the NOWRAP option has been set. The offending
command has been aborted.

BAD DATA FORMAT

An MSWAP or LSWAP command has determined that the data in the
current buffer is not a valid macro or label table, These commands store
a checksum byte in the data they produce to insure the integrity of their
table formats. Do not change the data in any way while it is in the
buffer. If you have not changed the data, then it was probably damaged
when it was written to or read back from disk.

STATUS INCOMPATIBLE

In many cases, commands are valid under some situations but not under
others. Some examples: the IMAGE mode is not possible when using an
80-column display, the TRACKS command is not valid when in a block
mode (PRODOS, PASCAL), and the SVOL command is not valid if there is
no SIDER hard disk connected to the current slot.

4-24 Bag of Tricks 2

ZAP—A FUNCTIONAL DESCRIPTION

This section describes how to use ZAP., It is intended for first time users
and for those who have not used ZAP for a while. This section also
includes examples of how to use some of the more advanced features of
ZAP, such as macros, labels, and loops.

If you are unfamiliar with ZAP, it is recommended that you read over this
section quickly, then perform "A ZAP Tutorial” (the following section),
and return to this section to study it in more detail.

Once you become familiar with ZAP, you should find the reference
material in the front of the chapter sufficient to operate the program.

ZAP COMMAND SYNTAX

In general, ZAP commands consist of one or more characters of command
name followed by zero, one, or two operands. No spaces may appear
between the command name and its operands. For example:

WRITE11,0 is valid but:
WRITE 11,0

is not. This restriction is necessary since multiple ZAP commands may
appear on one line, separated by blanks. For example:

+3 :'"HI THERE' UNLOCK WRITE LOCK

will move the buffer cursor forward three bytes, stoie the string 'HI
THERE' into the buffer at the current position, unlock ZAP to allow
writes, write the modified buffer to the disk, and re-lock ZAP--all
without any additional user intervention. Obviously, putting a blank
between a command and its operands will cause ZAP to interpret the
command as if no operands were given and to attempt to interpret the
operands as a second command on the line!

A nice feature of ZAP allows you to re-enter the previous command with
a single keystroke (RETURN is not required). If you have not pressed
any keys since the last command was entered, the TAB key (CTRL-I on
Apple II Plus) automatically reenters and executes the previous
command.

If an error occurs during the execution of any command, processing stops
and an error message is displayed. Execution of the current command
and any commands following it will be aborted. Error messages are
described in detail in a previous section of this chapter.

Any operation which is time consuming (such as a disk search or multiple
commands on a line) may be prematurely aborted by pressing any key on
the keyboard.

Zap 4-25

ZAP commands can be divided into several functional areas. Each of
these functional areas will be discussed later in this section.

DISK 1/0

BUFFER OPERATIONS

SEARCH AND COMPARE COMMANDS
OPTION SWITCHES

FILE OPERATIONS

PRINTER OPERATIONS

MACROS

LABELS

TRACE COMMANDS -
MISCELLANEOUS COMMANDS

ZAP EXPRESSIONS

Wherever the string [EXP] appears in this documentation, it refers to any
valid expression whose computed result will be used for the value of the
operand. Do not type the brackets. Expressions are formed by
combining one or more terms, such as hexadecimal numbers, decimal
numbers followed by a decimal point, character strings (see below), or
label variables (to be described later), using addition (+) or subtraction
(-). Examples of valid expressions are:

15 (hex $15)

15. (decimal 15)

'B'~157.+A (ASCII for B less 157 decimal plus hex A)
PROGRAM+3E3 (Label variable plus offset in hex)
+ENTLEN (Add label variable to current value)

[STR1 represents a string operand, either hex or characters. A hex
string may be up to 16 bytes in length and may be preceded by an optional
dollar sign. A character string may be up to 32 characters in length and
must be surrounded in either single or double quotes. If single quotes
are used, the ASCII representation of each character is assumed to have
the most significant bit on (as in Applesoft, the Apple Monitor, and DOS).
If double quotes are used, the MSB is assumed to be off (as in ProDOS,
Pascal, and CP/M). Examples of valid strings are:

$3DOF56BETF (Hex string of 5 bytes)
5 (Hex string of 1 byte)
'HI THERE' (Character string of 8 characters, MSB on)
"CPM FILE" (Character string of 8 characters, MSB off)

4-26 Bag of Tricks 2

DISK 1/0

Related Commands:

S[SLOTI],[DRIVE] SET SLOT/DRIVE

TRACKS[EXP] SET TRACKS PER DRIVE

BLOCKSIEXP] SET BLOCKS PER VOLUME

+[EXP] MOVE FORWARD IN BUFFER, DISK, OR FILE
-[EXP] MOVE BACKWARD IN BUFFER, DISK, OR FILE
R[TRK],[SEC] READ TRACK, SECTOR (FILE CLOSED)
R[BLK] READ BLOCK

RI[REC],[BYT] READ RECORD, BYTE (FILE OPEN)

WRITE[TRK],[SEC] WRITE TRACK, SECTOR (FILE CLOSED)
WRITE[BLK] WRITE BLOCK

WRITE[REC],[SEC] WRITE RECORD, BYTE (FILE OPEN)

N[EXP] NEXT SECTOR (PLUS [EXP] SECTORS)
PLEXP] PREVIOUS SECTOR (MINUS [EXP] SECTORS)
% INDIRECT READ TRACK/SECTOR OR BLOCK
%% INDIRECT READ FROM PRODOS INDEX BLOCK

BUFFER OPERATIONS

Related Commands:

[EXP] SET BUFFER CURSOR

#[EXP] SELECT BUFFER

SWAP SWAPS BUFFER HALVES

:[STR] STORE STRING INTO BUFFER

SET[STR] MULTIPLE STORE

&[STR] LOGICAL AND OPERATION

O[STR] LOGICAL OR OPERATION

X[STR] LOGICAL EXCLUSIVE OR OPERATION

ZAP maintains sixteen (16) 256 byte areas, called buffers, into which you
may read block or sector images. More than one buffer is provided to
allow you to simultaneously manipulate multiple blocks or sectors
without having to write any of them back to disk until all changes are
made, Likewise, multiple buffers are handy when writing macros to
compare or copy files or complete diskettes. The current buffer number
(in hexadecimal) is displayed on the status line. Initially buffer zero is
displayed.

Each buffer has associated with it a block number or a track and sector
number for the image it holds. If a file is open, this number is translated
into a a relative block address (RBA) or a relative sector address (RSA).
This "tag" information is set whenever a DISK I/0 command is issued for
that buffer. If no I/0 command has ever been issued or if the operating
system mode (DOS16, etc.) has changed or if a new file is OPENed, these
tags are erased (since they are no longer meaningful) and the buffer is
considered "empty". An empty buffer is denoted on the status line with

Zap 4-27

question marks. However, the data in an "empty" buffer remains intact
to allow you to copy or compare data across different files or diskette

formats.

SEARCH AND COMPARE COMMANDS

Related Commands:

LISTR] LOOK FOR STRING

V[STR] VERIFY STRING MATCHES BUFFER
COMPARE[BUFFER] COMPARE BUFFERS

OPTION SWITCHES

Related Commands

COL TOGGLE 40/80-COLUMN DISPLAY
LCASE DISPLAY LOWER CASE AS IS

UCASE TRANSLATE LOWER CASE TO UPPER CASE
IMAGE PRINT CHARACTERS IN IMAGE FORM
ASCII STANDARD ASCII TRANSLATION
LOCK PREVENT WRITE OPERATIONS
UNLOCK ALLOW WRITE OPERATIONS

DOS16 USE DOS 3.3 OPERATING SYSTEM
DOS13 USE DOS 3.2 OR 3.1 (13 SECTOR)

CPM USE CPM OPERATING SYSTEM
PASCAL USE PASCAL OPERATING SYSTEM
PRODOS USE PRODOS OPERATING SYSTEM
WRAP ALLOW DISK OR FILE WRAPAROUND
NOWRAP PREVENT DISK OR FILE WRAPAROUND
svoL[voL] SET SIDER VOLUME

Most option switch commands act like binary switches. This means that
the commands toggle an internal ZAP "switch" which can be in either of
two positions. These switches have an initial default setting, but you
may change them using option switch commands. Option switches
control ZAP's operation in numerous ways, including display of ASCII, the
LOCK mode, etc.

FILE OPERATIONS

Related Commands:

OPEN[STR] OPEN A FILE
RLEN[EXP] SET RECORD LENGTH
CLOSE CLOSE FILE

WHERE OPEN FILE CONTAINING SECTOR

4-28 Bag of Tricks 2

ZAP normally accesses blocks by block number and accesses sectors by
track/sector number. When the OPEN file command is issued, however,
ZAP switches to a file relative mode. While in file mode, all references
to blocks or sectors are file relative. This means that the N (next)
command, for example, will read the next logical block or sector of the
file, even if that block or sector is not the next one in order on the disk.

While in file mode, blocks or sectors outside the opened file may not be
referenced.

Having a file open modifies the operation of the R (read) and WRITE
commands as well. References are at the record/byte offset level,
rather than block or track/sector. The user can set the record length by
means of the RLEN command. The default values for RLEN are 256, for
DOS and CP/M files, and 512. for Pascal and ProDOS files.

PRINTER OPERATIONS

Related Commands:

PR#[EXP] SET PRINTER SLOT NUMBER
PRINT COPY SCREEN TO PRINTER
DUMP[EXP] DUMP SECTOR(S) TO PRINTER
IDUMP DUMP INSTRUCTIONS TO PRINTER
NOTE[LINE] PRINT COMMENT LINE

LOG LOG ALL CHANGES

NOLOG STOP LOGGING CHANGES

MACROS

Related Commands:

[NAME] INVOKE MACRO

(INAME][TEXT]) DEFINE MACRO

/[NAME] DELETE MACRO

MACROS LIST ALL MACROS

MSWAP SWAP MACRO TABLE WITH BUFFER

One of ZAP's most powerful features is the ability to write your own
macros. A macro is, functionally, a string of ZAP commands, associated
with a short name. Whenever you type the name, it is automatically
replaced on the command line with the string of commands it represents.
In this way, using a combination of ZAP commands, you can define your
own commands. Macros are also handy to provide a shorthand way of
performing multiple tasks. In Chapter 6 there are examples that use
macros to copy and compare files,

Macro definitions are preceded by an open parenthesis and end with a
close parenthesis. An example macro definition might be:

(ZOT UNLOCK WRITE LOCK)

Zap 4-29

Here, the first word in the definition is the name of the macro itself,
ZOT. Each time the word ZOT appears on a command line it will be
replaced by the string "UNLOCK WRITE LOCK" and these commands will
then be processed. In this case, the ZOT command just defined will
defeat the lock mode protection by unlocking, writing, and relocking--a
quick and dirty way of forcing a write command to work. Incidentally, a
macro definition may contain the name of another macro (nested macros)
if you desire. For example, a new macro could be defined as follows:

(ZIT ZOT NOTE FORCED WRITE)

In this case, the ZIT macro invoi{es the ZOT macro and then prints a
comment on the printer, "FORCED WRITE". Be careful, however. If a
macro invokes itself, either directly or indirectly, recursion will occur
and you will fill up the command line and an error message will be
displayed. The final size of the command string, after all macro string
replacements have been made, may not exceed 256 characters.

To some extent, a macro can have operands. Consider the following
macro:

(Z WRITE)

Whenever the Z macro is invoked, a WRITE command is performed. If
you entered a command of the form:

11,0
the line would look like this after macro replacement:
WRITE11,0

Since the last command in the macro's string can take operands, then the
macro can take operands as well.

ZAP maintains a 512-byte macro table. Using the macro definition
command you may store several macros in this table. At most, 511
characters may be stored. The table might contain one huge macro or
several smaller ones. You may save the entire table by using the MSWAP
command, described later, or you may print it using the MACROS and
PRINT commands. If you try to define a new macro but there is not
enough room left in the table you will see a "TABLE FULL" error message.
In this case, you will have to delete an old macro that you (hopefully) no
longer need to make room for the new macro and retry the definition.

ZAP provides you with several built-in macros. These macros are
predefined for you when you first enter ZAP. You may use them or
delete them at your option. They have been chosen for their general
utility as well as for being good examples of macros. They are:

4-30 Bag of Tricks 2

MREAD If you are currently viewing a block or sector in buffer zero,
MREAD will read it and the next 15 sequential blocks or

sectors into buffers 0 through 16, allowing you to modify
multiple sectors or blocks at a time.

MWRITE Writes the contents of all of the buffers back to the disk
(opposite of MREAD).

SAVEM Saves the contents of the macro table by writing it to bloek 1
(an unused block on ProDOS disks) on the current disk.

LOADM Reloads the macro table from block 1 of the current disk.

REOPEN If a file was previously open and you are still positioned to a
block or sector belonging to that file, REOPEN re-opens the

file and positions to that block or sector.

LAST Positions to the last byte of an open file or the last byte of
the diskette (WRAP must be allowed for LAST to work
properly).

QUIT An alias for the END command. Many users are more used to

QUIT to exit a program then END.

LABELS

Related Commands:

LABELS DISPLAY ALL LABELS

=[NAME] DEFINE LABEL

/INAME] DELETE LABEL

INAME] POSITION TO LABEL

[NAME] +[EXP] POSITION TO LABEL PLUS EXPRESSION
LSWAP SWAP LABEL TABLE WITH BUFFER

ZAP allows the definition of up to ten label variables. A label variable is
something like a variable in BASIC. By means of the = command, the
user assigns a name that is one to eight characters in length,

ZAP labels have two pieces of information associated with them:

1. a block number or track/sector number, and

2. a buffer offset.
When a file is open, the block number or track/sector number must be
within the open file, and is represented by an RBA or RSA.

The usual use of label variables is to remember your place in a file or
somewhere on the diskette. For example, imagine that you have, after
much searching around, located the HELLO file name in DOS. You want
to associate a "name tag" with this position on the diskette so you define
a label as follows:

=HELLO

Zap 4-31

Later, after positioning to other sectors on the disk, you want to return
to the HELLO file name's sector again so you type:

HELLO

ZAP looks up the word HELLO in its macro table first and doesn't find a
macro by that name. It then searches its label table and finds a
definition for HELLO. The sector containing the HELLO file name is read
and the buffer cursor is left over the first byte of the file name,

Labels may be followed by expressions. For example, if you have defined
a label to point to a subroutine in a binary file which contains an
assembly language program you are debugging, you can position to an
offset in that subroutine. For example:

SUBRTN+3E3

ZAP will compute the proper block or sector to be read and read it,
leaving the buffer cursor at the appropriate offset.

Label variables can also be used in a relative way, as terms in an
expression, When labels are employed in this way, the block or
track/sector part of the label is ignored. Only the buffer offset value is
used. The following example shows how you can use labels in a relative
way.

35.

=EL
11.

+EL
+EL
+EL
ete.

Suppose you were looking at a DOS catalog sector. Each file's entry is 35
bytes long. By positioning to buffer byte 35 decimal (which has no
special meaning, apart from being at the right offset) and assigning a
label, EL (for entry length), we have a convenient way of moving from
catalog entry to catalog entry. After positioning to byte 11 decimal, it
is a simple matter to instruct ZAP to position +EL bytes forward each
time we want to see where the next file's entry begins.

To sum up, if a label is the first term of an expression, and is not
preceded by an operator (plus or minus sign), then both the block or
track/sector information and the offset information are used. If a label
is not the first term in an expression, or if it is preceded by an operator,
then only the offset information is used.

The same caveat exists for label variables as for macros. Try to avoid
picking names which might conflict (even partially) with those of ZAP
commands. Remember that your macro names take precedence over your
label names, and your label names take precedence over ZAP command
names.

4-32 Bag of Tricks 2

One label, the * label, is predefined for you by ZAP., The * (asterisk)
label always contains the position following the last read or write
operation. * is very useful when reading into an "empty" buffer, since
there is no other way to make a relative reference (R+3 or the N
command are not valid in an empty buffer).

TRACE COMMANDS

Related Commands:

TRACE DISPLAY TRACE TABLE
< BACK UP IN TRACE
> ADVANCE IN TRACE

ZAP keeps a 32 entry trace table that records your movements within a
buffer or over the disk or open file, This allows you to back up to a
previous position and move forward again to your last position., Each
time your display is updated, if the buffer cursor has moved or if a new
block or sector has been read, an entry is made in the trace table, If
the trace table is full, the oldest entry is removed to make room for the
newest one,

MISCELLANEOUS COMMANDS

Related Commands:

AT[EXP] POSITION BUT DO NOT READ
AT MARK BUFFER EMPTY

?[EXP] CALCULATOR

I DISASSEMBLE TO SCREEN
LOOP[CNT],[LOC] REPEAT LINE

HELP[EXP] SHOW HELP SCREEN

VTOC READ DOS VTOC

CAT READ FIRST CATALOG SECTOR
STATUS SHOW ZAP STATUS VARIABLES
END EXIT ZAP

The AT command:

This command is useful if you want to do a WRITE operation using an
expression or label variable. For example:

ATPROGRAM+3E3
WRITE

will set up the tag information to point to the disk location which is
+$3E3 bytes from the label "PROGRAM" and then write the contents of
the buffer to the disk.

Zap 4-33

If no expression is given with the AT command, the current buffer is
marked empty (the tag information is set to question marks). This is
useful sometimes when you want to force ZAP to read a block or sector
in, even if the block or sector associated with the buffer matches the
one you are reading. For example, you might perform the following
commands:

#+1 AT PROGRAM 3E:01 WRITE

In this example, if the AT command did not preceed the label expression,
PROGRAM, it is possible that the new buffer was already pointing there
but that the data in it was not useful for some reason (you had switched
disks or had changed the buffer data in some way). Putting the AT
command first forces ZAP to read data from the disk when it sees the
PROGRAM expression.

The LOOP Command:

In its simplest form, LOOP with no operands will repeat the entire
command line that precedes it, from the first character up to the LOOP
command, ad infinitum (forever and a day), or until an error message is
displayed (you ran off the end of the buffer, for example) or until you
press any key on the keyboard. This form is the easiest to use.

UNLOCK NOWRAP SET0 WRITE N LOOP
will zero out the entire diskette (from the cursor on) or an entire file if
a file is open. The command will stop when the "NUMBER TOO BIG" error
occurs as ZAP attempts to read off the end of the diskette (or file) and
wrapping is not permitted.

If [EXP1] is given, it is used to count the number of times the loop is to
be performed. It may be any positive absolute number from 1 to
+8388607. For example:

#+1 * N LOOP15,
will fill all 16 buffers with the next 16 blocks or sectors (assuming buffer
zero has just been read).

If [EXP2] is given, it is used to identify the command at which to start
looping when you don't want to start looping with the first command on
the line. The value of [EXP2] identifies the character in the command
line where the looping is to start. The first character is numbered 0
and blanks are counted. Consider the following example:

#0 * #+1 AT *+256, LOOPI15,,5
In this example, character 5 on the command line is the place to which
ZAP is to loop back., This would be the first character of the #+1

command. A relative expression could also be used:

#0 * #+1 AT *+256. LOOPI15.,-18.

4-34 Bag of Tricks 2

This line is identical to the command line given earlier except that a
relative offset from the first operand character of the LOOP command is
given (#+1 is 18 decimal characters back from the first character of 15.,~
18.). This form is preferable if you are writing a macro since you do not
necessarily know where the macro will appear on the command line and
can not be sure of the absolute line location of anything within your
macro. Be careful, however, if you have any nested macro calls between
the LOOP and its starting point. The macro replacement will change the
number of characters between the start point and the LOOP command.

A ZAP TUTORIAL

This tutorial is intended to familiarize the novice ZAP user to some of
the more basic ZAP features. Boot up a backup copy of the Bag of Tricks
2 diskette (see Chapter 1 for loading instructions), press Z to select ZAP,
and follow along with the tutorial.

When the ZAP program is entered, it determines whether or not your
computer has 80-column capability. If it does, ZAP selects the 80~column
mode for you. Otherwise, of course, ZAP will begin in the 40-column
mode. Those who have 80-column capability and a high-resolution
monitor will probably always use the 80-column mode. Those with 80-
column capability but a standard color display may prefer the clarity of
the 40-column mode,

Let's begin by looking at the second line of the display. This is the
command input line. The first character on this line is the prompt
character (a colon). To the right of the colon is a white block,
indicating the cursor. Now enter your first command by typing COL and
pressing the RETURN key.

If the display was previously 80-column, it just changed to 40-column. If
the display was previously 40-column, nothing happened, because you do
not have 80-column capability. In either case, the word COL remained
on the command line and the C is in inverse video, indicating the cursor
position.

This tutorial will continue in the 40-column mode so that it will be the
same for all users.

The initial 40-column screen should look like Figure 4.1, Most of the time
you are in ZAP you will see screens similar to this one,

The top line of Figure 4.1 is called the status line. All values on the
status line are hexadecimal values. From left to right the indicators are
as follows:

SLOT NO. This is the last disk drive slot number accessed and it
will be the next one used if it is not changed by an §
command.

Zap 4-35

HEX
CURSOR

- SLOT NUMBER
DRIVE NUMBER
OPER SYS MODE
-BLOCK
OFFSET——;

7 AP - 86,1 PRO BLK$???? +$7727

COMMAND —>
LINE

BUFFER OFFSETS-T

i 1#0 *NLT

~—— BUFFER NO.
LOCK FLAG

WRAP FLAG
DISPLAY FLAG
PRINTER SLOT

00000000000000000003000 ..

00000000020000000000000 ...

..........

ASCII
CURSOR

~ - I
HEX ASCII
EQUIVALENT

Figure 41 Beginning ZAP Display

4-36 Bag of Tricks 2

DRIVE NO.

OPER SYS MODE

BLOCK

OFFSET

BUFFER NO.

LOCK FLAG

WRAP FLAG

DISPLAY FLAG

PRINTER SLOT

Similarly, this is the last disk drive number used.

The current operating system mode. ZAP defaults to
the ProDOS mode.

The last block accessed is displayed here. No block
has yet been accessed, so question marks appear.

This is the current byte offset into the sector buffer,
given in hex. It indicates the current position of the
buffer cursor (to be described later) within the buffer.
At present, since no data has yet been read from the
disk, it has no value,

There are 16 buffers (memory areas into which you can
read data) provided by ZAP. They are numbered $0
through $F. At present, buffer $0 is selected and
displayed. The buffer number indicator is also used to
remind you that you have made changes to the buffer.
If you should modify the buffer contents, the buffer
number will be displayed in inverse video.

Whenever you first enter ZAP, it places itself in LOCK
mode. This prevents you from accidentally writing to
the disk. When you are in LOCK mode, an asterisk (*)
appears in this position on the screen. Otherwise, a
blank appears.

This character is either W (Wrap) or N (Nowrap). The
W in this case means that "wraps" are allowed. For
example, if you are looking at the last block of a file
and ask to see the next block, the first block of the
file will be displayed.

The character printed here indicates which translation
is used on the ASCII display given below on the right
side of the screen. If a standard ASCII translation is
used, a "U" or a "L" is printed to indicate whether
lower case characters are printed as their upper case
equivalent ("U") or printed as lower case ("L"). If
IMAGE mode is in effect (described later), an "I"
appears here,

This is the slot number for an optional printer. If you
have a printer controller card in the indicated slot,
you may issue commands within ZAP to dump the buffer
in hex and ASCII onto the printer, create an audit trail
of changes you make to the disk, etc. When LOGGING
(audit trail) is turned on, the printer slot number is
printed here in inverse video.

Zap 4-37

Below the command input line is the hexadecimal and ASCII display of
the contents of the current sector buffer. In the example of Figure 4.1,
no sector has been read so zeros are displayed. Given at the far left, in
inverse video, are the hex offset locations for the first byte on each line.
This is done so that you can determine the offset of any byte by counting
to the right from the first on its line. Each line shows 12 bytes of hex
followed by its equivalent in printable ASCII. If this were the display of
the directory, for example, you would see file names over on the right
hand side of the screen. i

Notice that the first byte of the buffer, both its hexadecimal value and
its ASCII equivalent, is in inverse video. This indicates that the buffer
cursor is pointing to this byte. Using ZAP commands, you may move the
buffer cursor around the buffer to indicate where changes are to be
made.

The buffer that ZAP displays is really just a part of the computer's
memory that disk data is copied into. When data is copied from the disk
to the buffer, nothing is changed on the diskette itself. Using ZAP
commands, you may change the contents of this buffer to your heart's
content. You have not changed the original disk data in any way.
Should you wish to change the disk data, you must instruct ZAP to write
the contents of the sector buffer back to the disk (you don't have to
write it to its original location, but this is the usual case). Thus disk
data can be modified on a block by block or sector by sector basis,
depending on the operating system mode.

Now it is time to actually read a block from disk into the buffer. Make
sure the Bag of Tricks 2 diskette is still in the same drive and type the
following ZAP command, followed by a carriage return.

R2

The disk drive will turn on and in a moment the display will change.
What you have just entered is a READ command, instructing ZAP to read
block number 2 from the disk in the current slot and drive. If you have
read Beneath Apple ProDOS you know that block 2 of a ProDOS disk
contains the Volume Directory. Your screen should look something like
Figure 4.2.

Suppose you wanted to use ZAP to change the name of one of the files in
the Volume Directory. This may not sound too useful, since the ProDOS
RENAME command will do this. Under some circumstances illegal
characters may be imbedded in the filename, making it difficult if not
impossible to delete or rename the file. To correct such a situation, it
might be necessary to use ZAP on the directory. Pretend that the file
named "ZDOS" has a bad character in it. To fix the name, you must
position the buffer cursor to the part of the buffer you want to modify.
Type the following command:

+Al

4-38 Bag of Tricks 2

ZR!2_P - 56,1 PRO BLK$0002 +3000 #0 *WL1

000300F4U2UF5432000000 [J. . .tBOT2.
000000003000000000000000 v.vvvrsansas
000000025AB00000000C327&+....C'
0D0900060018012650524F 4L&PROD
UEF53000000000000000000FF OS.vvvunn..
08001E00003A0026AB000000 . vu.? &t...
00210020324900000200235A 1. 2)....#Z
415000000000000000000000 AP.vvvvnen..
00000626002B0054530059A8 .. .&.+. TS. Y+
00000000E3000358AB000002c..X+...
0027424F5432504958000000 . 'BOT2PIX...
000000000006290011000020 v...v)....
00000000000000E300202548 c. %+

09G00000200245A444F53000000 .. ¢ZDOS
0A80000000000000000063A0006 +eveernantn.
0B OE3090026ABOOOOOOOOE300 Cobt c

0C OOOOOOOOOOOOOOOOOOOOOOO
PDEGCO01500E4260049AB000000 1...d&.I+...
PEHOOE3000849AB000002002A42 .. I+....*B

F542E53595354454D000000 OT.SYS TEM. s
OOOFF690004000005005BAB +.iv.....[+

Figure 42 The Volume Directory

This tells ZAP to position the buffer cursor forward $A1l (161 decimal)
bytes from its current position ($00). The cursor should now be over a
$5A, the "Z" in ZDOS. Notice that the whole hex/ASCII display has
moved so that the offset "024" is now at the top line of the hex/ASCII
display. This is because a block contains 512 bytes, and only 264 bytes
can be displayed at one time in the 40-column mode (336 bytes in the 80-
column mode). When the cursor offset is in the middle part of the file,
the line that the cursor is on is placed in the middle of the display., Now

type:
MTURKEY"

(be sure to type the colon). You have now told ZAP to store the string
"TURKEY" into the buffer, starting at the buffer cursor. Notice that ZAP
has advanced the cursor to point past the last character stored. At this
point you might think you are done. You have renamed the file to
TURKEY. Wrong! Remember that all you have done so far is to change
the data in the buffer--you have not yet written that updated image
back to the diskette. ZAP reminds you that you have modified the data
originally read in by highlighting the buffer number on the status line.
In this case, we don't want to really modify the Bag of Tricks 2 diskette.

Zap 4-39

If we did, we would use the commands UNLOCK and WRITE, which would
write the modified buffer out to block 2 of the diskette. Instead, type in
the command:

R6
What happens? ZAP beeps and prints an error message:
WARNING: BUFFER CHANGED

Notice that the buffer number is not highlighted anymore. This means
you will only get one warning, If you do not write the buffer now, but
rather re-enter the Read command, ZAP will give up and do the read,
discarding the changes you have made to the buffer. We are about to
re-enter the Read command, but we're going to do it in a special way.

A special feature of ZAP allows you to re-enter the previous command
with a single keystroke (RETURN is not required). If you have not
pressed any keys since the last command, the TAB key (CTRL-I on Apple
II Plus) automatically reenters the previous command line. With the R6
still on the command line, press the TAB key.

You are now looking at block number 6, which is usually the Volume Bit
Map. For a description of the Volume Bit Map, see Beneath Apple
ProDOS, page 4-5.

Now we will try some other features of ZAP. It turns out you don't need
to remember the location of the Volume Directory or the Volume Bit Map.
ZAP knows where they are and will find them for you if you enter either
the CAT or VTOC command, respectively, Try it! When you enter the
CAT command, notice that the file ZDOS is still called ZDOS. The word
TURKEY never made it to the disk (thank goodness)!

Up to now you have made absolute references to blocks on the disk. ZAP
will also let you "open" a file. By file we mean one of the files in a
ProDOS directory. While the file is open, all references are made as "file
relative". This means that, instead of asking ZAP to read a specific
block on the disk, you will ask it to read a block relative to the beginning
of the file. You can try this out on a very short file by opening one of
the files on your practice diskette. Type:

OPEN"/BOT2/ZDOS"

This opens the file "ZDOS" on the volume directory "BOT2" (the Bag of
Tricks 2 diskette). If you make a typing error, you will get a "FILE NOT
FOUND" error message". Otherwise, the screen should look like Figure
4.3.

Notice that the status line has changed somewhat, The BLK information
has been replaced with a relative block address (RBA). You are looking
at the $0000th relative block of the file. The next block could be at the
other end of the diskette, but it is always accessed by entering Rl. You
will not be able to read blocks outside the file while the file is open.

4-40 Bag of Tricks 2

Z A P - 36,1 PRO RBA=$0000+5000 4#J

: OPEN™/BOT2/ZDOS"

0047306ADO0BB3526A3FFIDSFCO
0131D3CCOUB68EAAD0A0526208A
'02’B)88DOF3A9D 2089B5A9AA20

>OCOBDAEC CJB9OOBAL8DOLAAABD
66B9A627208CB5A9DE2039B5
8A9AA2039B5A9EB2039B5BDAE

COBD8CCO601848689D8DCO 1D
3CCO60A9308526A04088F00D .

34C87B649DSDOEYEABDECCO
10FBCIAADOF2A09ABD8CCO10
BCYADDOETA900883426BC3C
CO10FB5900BBA4269900BBDO
E8426BC3CCO10FB59008BAY
69900BACEDOEEBCBCCO10FB
900BBDO 14BD3CCOT0FBCYDE

BDZDCOBDBECO307C86273E |;

D8CCO10FBCOFFDOOTCH26D] =

#4L1

LOHRh] W&
B Px)U S)¥
S)- . P
9.;Y: * f9&

< 02,9, PK%&]
Y (*¥=f9.x...
8=.99. de*:
£9&' .5)" .
)*

sL.6IUPij=.@
AI%pPr .=.8.
{I-Pg)...&<.
@.{Y.;$&..;P
ﬂ.&(.@-{Y.;$
&..:HPN<. @,
¥y Pamal@s {T7

OOBEAEABD8CCO10FBCAAFO

P.jj=.0.{I%p

Figure 43 The First Block of the ZDOS File

You can always determine whether a file is open by looking at the status
line to see if BLK or RBA information is displayed.

You are now looking at the first block of a binary file. If you can read
assembly language and want to see what is in a binary file, you can use
ZAP's mini-disassembler, It's just like the one in the Apple monitor (in
fact it uses the disassembler in the monitor!). Type the following:

I

The hex/ASCII display has been replaced with a disassembly of the first
20 instructions. To erase the instructions and see the hex/ASCII display
again, press RETURN. Notice that the buffer cursor has been moved to
point to the first byte following the last instruction disassembled. Thus,
if you wanted to, you could "page" through all of the instructions in a
block by using the I command and then the TAB key to continuously
repeat the I command.

Now close the file and return to absolute mode by entering the command:

CLOSE

Zap 4-41

The BLK information reappears on the status line indicating that a file is
no longer open. We will now digress from the tutorial briefly to discuss
how commands are entered to ZAP,

ZAP provides a shorthand way for going to the next sector or backing up
one sector. The N command goes to the next sector and the P command
goes to the previous sector. Experiment moving from block to block
using the N and P commands.

You can also move ahead or back on the disk or within a file by typing a
relative number of bytes that moves the buffer cursor out of the current
buffer. For example, you can move forward 5,000 bytes in the file by

typing:
+5000.

Try this. The plus sign makes the term relative. Don't forget the
decimal point--that's what tells ZAP you are entering a decimal number.
Numbers without decimal points are always assumed to be hexadecimal.

A ZAP expression can have more than one term, as long as the terms are
connected by plus or minus signs. You can experiment with expressions
by using ZAP's built in calculator command., Just type a question mark
followed by an expression. For example:

?512.-$FF+1

Enter the command above and press RETURN. The following message is
displayed:

258. $000102

The results of the expression calculation are given in both their
hexadecimal and decimal form. You'll find the ZAP calculator command
is handy for computing offsets as well as converting hex to decimal and
decimal to hex,

This ends our ZAP tutorial. Additional tutorial-like uses for ZAP are
provided in Chapter 6.

CHAPTER S

FIXCATI - By Don Worth

The FIXCAT utility is designed to recover damaged DOS catalogs and
ProDOS directories, In the process it performs other functions such as
recovering lost files and freeing up unused disk space. You have the
option of directing FIXCAT's output to a printer, thereby producing a
detailed report on the contents of a disk.

In normal usage, the catalog or directory areas of a disk are the most
frequently read and written to. Therefore the catalog or directory are
the areas of the disk that are most frequently damaged. And a damaged
catalog or directory spells disaster, because none of the files listed in
the damaged directory can be accessed, even if the files themselves are
not damaged at all, which is the usual case. FIXCAT comes to the
rescue, recovering the directory and thereby exhuming otherwise
inaccessible files.

FIXCAT works by making changes to the DOS catalog and/or VTOC, or in
the case of ProDOS, to directories, subdirectories, and/or the Volume
Bitmap., No changes are made to the data and program files, Some
errors may be detected in track/sector lists or index blocks, but these
areas will never be modified by FIXCAT.

When FIXCAT works with a DOS disk, the disk must be a 5 1/4" floppy
diskette, When FIXCAT works with a ProDOS disk, the disk may be any
ProDOS volume, including hard disks and RAM disks.

When FIXCAT works with a DOS disk, all corrections are made to an in-
memory image of the catalog track, allowing the user to abort the entire
operation at any time along the way. Only after all operations and
checks are complete is the user given the option to write the new
CATALOG track image back to the target diskette.

When FIXCAT works with a ProDOS disk, which may have many
subdirectories in addition to the Volume Directory, the program operates
on one directory or subdirectory at a time. All corrections are made to

5-2 Bag of Tricks 2

an in-memory image of the directory being examined. Then the user is
asked if he wants the corrected directory written to the disk. If he says
yes, the revised directory will be written to the disk and the original
directory will be overwritten. Then FIXCAT goes on to the next
directory.

Note: Because FIXCAT modifies a disk (when requested to do so by the
user), it is recommended that the disk used with FIXCAT be a copy of the
original volume, The INIT program on the Bag of Tricks disk can be used
to make the copy.

For HARD DISK USERS, it will be impossible or very inconvenient to make
a copy of a damaged volume. We recommend hard disk users run FIXCAT
through twice. The first time through, print out the output on a printer
and always answer NO to questions that would modify the disk. Then
carefully study the printout to help decide what questions should be
answered YES when you run FIXCAT a second time. If several
subdirectories are involved, you may wish to operate on only one
subdirectory at a time, always generating printout and studying the
printout before rerunning FIXCAT for the next subdirectory.

If you have never used FIXCAT before, you will want to skip over the
section on "FIXCAT Messages" and read the sections entitled "FIXCAT--A
Functional Description"” and "A FIXCAT Tutorial," FIXCAT documen-
tation is organized as follows:

Section Page
FIXCAT Messages 5-3
FIXCAT--A Functional Description 5-19
A FIXCAT Tutorial 5-24

A BLOWN CATALOG TRACK
MAKES A DISKETTE UNUSABLE...

Fixcat 5-3

FIXCAT MESSAGES

This section contains an explanation of each of the messages that
FIXCAT can display. The messages are divided into those which can
appear when running the DOS part of FIXCAT and those which can appear
when running the ProDOS part of FIXCAT. The messages are discussed in
the order that they would occur when running FIXCAT.

DOS MESSAGES

OPERATING SYSTEM SELECTED: DOS 3.x

This message is sent to the printer to identify the operating system
selected (DOS 3.3 or DOS 3.2).

PROCESSING DISK IN SLOT X, DRIVE X

This message is sent to the printer to identify the selected slot and drive
when fixing a DOS disk.

READ EXISTING CATALOG FROM DISKETTE

OR START FROM SCRATCH? ("R" OR "S")

If your catalog is at all intact, specify R (the default) to have FIXCAT
use it as a basis for its operations. Only if there is not a single valid
sector left in the catalog should you specify "S". In this case, FIXCAT

will start with a zeroed out catalog track and will build it up from
scratch,

... BUT EIXCAT RESTORES THE
CATALOG , AUTOMATICALLY |

5-4 Bag of Tricks 2

CATALOG TRACK MAY REQUIRE RE-INIT

While attempting to read your catalog track into its memory buffers,
FIXCAT encountered an 1/0 error. If the error is merely a read error, it
will be taken care of when the corrected track is rewritten to the disk.
If the error is due to damaged sector formatting, then an 1/0 error will
occur when the final write operations are attempted. In this case, it
will be necessary for you to use the INIT utility first, to correct the
sector formatting, before attempting to run FIXCAT again.

CHECKING FORMAT OF VTOC FOR VALIDITY ...
FIXCAT is validity checking the VTOC in memory. This could be a copy
of the VTOC it read from your diskette or it could be a zeroed sector if

you answered the above question "S8". The following messages may
appear if errors are detected.

LINK TO CATALOG BAD
The track/sector pointer to the first catalog sector from the VTOC (at

offset +1, +2) is invalid. You will be asked if you want it fixed. Reply Y
or N.

VERSION NUMBER BAD

The DOS version number at +3 in the VTOC is invalid for this type of
diskette, If you want FIXCAT to fix it, reply Y.

BAD VOLUME NUMBER

The volume number stored at +6 in the VTOC does not match that of the
diskette. Reply Y to have FIXCAT correct it.

TSL ENTRIES/TSL BAD
The number of data sectors which can be described by a Track/Sector

List (TSL) is incorrect, This constant is at +$27 in the VTOC, Type Y to
have it fixed.

LAST TRACK ALLOCATED BAD

The last track allocated value is not a valid track number. Type Y to
have FIXCAT correct it ($11 will be used).

ALLOCATION DIRECTION BAD

The VTOC indicator of the direction of allocation is not a +1 or a -1,
Reply Y to have a +1 stored there.

Fixcat 5-5

TRACKS PER DISK BAD

The tracks per disk value is not 35. Type Y to have it changed.

SECTORS PER TRACK

The sectors per track value is not 16 (or 13 as the case may be). Type Y
to fix it.

SECTOR SIZE BAD

The sector size should be 256. It is not. Reply Y to set it to 256.

CHECKING FORMAT OF CATALOG ...

FIXCAT is validity checking all of the catalog sectors for formatting
errors. The following messages may occur if an error is detected.

CATALOG LINK BAD

A track/sector pair at +1,+2 in a catalog sector does not point to the
next catalog sector. The track and sector number of the offending
catalog sector are printed with this message. Type Y to fix the pointer.

BAD TSL POINTER FOR FILE

A track/sector list pointer in a file descriptor entry contains an invalid
track or sector number. The name of the file is displayed and you will
be asked if the entry should be deleted. If you reply Y, you may still
recover the file (if it really exists) using the SCAN FOR LOST FILES
option of FIXCAT.

DOES THIS DISKETTE CONTAIN A DOS IMAGE
ON TRACKS 0, 1, AND 2?

If this is a standard, bootable diskette, reply Y (default). If you want to
recover tracks 1 and 2 for your own use and never boot this diskette
again, reply N. Also reply N if you have previously recovered these
tracks using FIXCAT.

FILE: filename

FIXCAT is checking this file, found in the catalog, for validity and is
using it to build its sector allocation map. The following messages may
appear.

5-6 Bag of Tricks 2

TRACK/SECTOR LIST: T$nn S$nn

FIXCAT is about to read a track sector list sector for the file. The
location of the list on the diskette is given.

UNABLE TO READ FILE. DELETE IT?

FIXCAT was unable to read the first track/sector list sector because of
an 1/0 error. If you reply Y, the file will be deleted from the in-memory
image of the catalog. You may be able to recover the file later using
the SEARCH FOR LOST FILES option (assuming that the TSL wasn't really
where the catalog entry said it was).

DATA: T$nn S$nn T$nn S$nn ...

This is a list of the data sectors contained by this file, as described by
this TSL sector.

UNABLE TO COMPLETE PROCESSING FOR FILE

FIXCAT was unable to read a subsequent track/sector list because of an
1/0 error. No further checking for this file will be done. This could
mean that the TSL link pointer in the current TSL is bad or that an I/0
error has crept into the second TSL. FIXCAT will mark the remaining
data sectors of the file free for use by other files, so you may not want
to rewrite the catalog track.

BAD TRACK/SECTOR POINTER

One of the track/sector pairs, describing a data sector, in the
track/sector list is not valid. It is the last one printed on the DATA:
message. You may have to use ZAP to correct it, assuming you can
figure out what it is supposed to be.

TOTAL SECTORS ALLOCATED TO FILE: $nnnn

Given here is the count of the total number of sectors belonging to the
file, including TSL sectors.

WARNING: ONE OR MORE SECTORS IN THIS
FILE OVERLAP A PREVIOUSLY PROCESSED
FILE. COPY THIS FILE TO ANOTHER DISK,
DELETE IT, AND RERUN FIXCAT.

While marking the sectors of this file "in use" in the VTOC freespace
map, FIXCAT noticed that a previously processed file, or the DOS image

Fixcat 5-7

OVERLAPPING FILES

or catalog track itself, had allocated these sectors for its use. It is not
clear who got there first or how much of the file may be damaged. You
should halt execution of FIXCAT, copy this file to another diskette and
delete it from this one. This will free its sectors (and probably some of
the other file's as well). To correct this, rerun FIXCAT against this
original disk. Repeat this process each time you see the above message.
You will then have to use ZAP or some other program to examine the
affected files carefully for loss of data.

EXISTING SECTOR COUNT WRONG. FIX IT?

FIXCAT's count of allocated sectors for the file does not match that of
the catalog entry. Type Y to change the catalog entry.

SCAN FOR LOST OR DELETED FILES?

If you do not think you have any missing files, reply N (the default). If
you wish to have FIXCAT search the entire diskette for "unattached"
track/sector list sectors, type Y. One word of warning, however,
FIXCAT may find some old files you don't want back, such as previously
deleted ones. These old files may be somewhat "moth eaten" in that
some of their sectors may have been appropriated for use by other files
and are overwritten. While the scan is in progress, FIXCAT will display
the first data sector of each file it finds to ask you if you really want it
recovered. The following messages will occur during a scan.

SCANNING DISK FOR LOST FILES

FIXCAT is reading every sector on the diskette from track 1 on for what
might be a track/sector list, This takes time so be patient.

CATALOG IS FULL. SCAN HALTED

A lost file was found but there is no more room in the catalog to add an
entry. The scan is prematurely stopped.

5-8 Bag of Tricks 2

FILE LOCATED. FIRST DATA SECTOR:
XXXXXXXXXXXXXXXXXXXXXXXX eon
XXXXXXXXXXXXXXXXXXXXXXXK oee
XXXXXXXXXXXXXXXXXXXXXXXX soossesseres
etc.

A track/sector list has been located which has no corresponding entry in
the catalog. Using the list, the first data sector has been read and some
of it is displayed on the screen in hexadecimal and character. Use this
display to try to identify the file so you can give it a recognizable name,

UNABLE TO DUMP FIRST SECTOR

FIXCAT got an 1/0 error attempting to read the first data sector of the
file, so no hex/character dump could be done.

RECOVER THIS FILE?

If you think that this is a file you want, reply Y (the default). If the
file looks like an old deleted file you no longer wanted, reply N. If you
reply Y, the following messages may appear.

PLEASE GIVE A NAME TO THE FILE.

Using the hex/character dump, try to make up a suitable name for the
recovered file, If you can't think of a name, FIXCAT will prompt you
with a unique one.

PLEASE SELECT THE FILE TYPE:

If you were able to identify the file, you probably know its file type as
well. FIXCAT will prompt you with a menu of file types, and will supply
its best guess as the default. You'll find that FIXCAT will be correct in
its guess about 95% of the time. If the wrong file type is given and you
later detect this (by trying to load an Integer basic file into Applesoft,
for example) you can delete the file and rerun FIXCAT, supplying a
different type.

FILE: filename
etc.

At this point FIXCAT will process the file, exactly as it does files which

were already in the catalog. See the descriptions of these messages
earlier for more information about them.

nnnnn SECTORS IN USE

FIXCAT is analyzing its completed VTOC freespace map. There are
nnnnn sectors allocated to files, the catalog, or the DOS boot image.

Fixcat 5-9

nnnnn SECTORS FREE

FIXCAT has determined that there are nnnnn sectors left for future
allocation by files.

NO ERRORS IN VTOC BIT MAP WERE FOUND

The computed VTOC freespace map image in FIXCAT's buffer matches
the one on your diskette.

ONE OR MORE ERRORS WERE FOUND IN THE
VTOC BIT MAP. CORRECT THEM?

FIXCAT's computation of the freespace map does not match the one on
your diskette (this could be because you recovered a file or it could be
your diskette has some "lost" sectors). If you want to update the VTOC
freespace map with FIXCAT's corrected version, reply Y. Note that
answering the DOS ON TRACKS 0, 1, AND 2 message incorrectly for your
diskette will produce this message.

PROCESSING COMPLETED.

All validity checks have been completed against your diskette. FIXCAT
is ready to write the corrected catalog track image back to the diskette,
Up to this point it has not written to your diskette in any way.

APPLY ACCUMULATED CORRECTIONS TO THE
VTOC/CATALOG TRACK?

Reply Y if you want the corrections you have authorized up to this point
to be applied to the catalog track on your diskette. Reply N if you want
to forget the whole thing and not change your diskette after all.

NO CORRECTIONS TO THE CATALOG ARE REQUIRED

No changes were ever made to the memory image of the catalog track so
there is no point in writing it back to the diskette.

CATALOG TRACK DOES REQUIRE RE-INIT

An I/0 error was encountered while trying to write the catalog track
image back to the diskette. The most likely cause is that the formatting

for one or more sectors on the catalog track is damaged. You will have
to run the INIT utility to correct this and then rerun FIXCAT.

5-10 Bag of Tricks 2

ERROR (T$nn S$nn): BAD TRACK/SECTOR POINTER

FIXCAT has attempted to read a sector whose track or sector value is
out of range. The offending values are printed in hex. This message is
usually associated with another FIXCAT error message, which will
immediately follow it.

ERROR (T$nn S$nn): I/0 ERROR

FIXCAT got an input/output error trying to read or write the
track/sector indicated.

ERROR (T$nn S$nn): WRITE PROTECTED

FIXCAT was trying to write back the corrected catalog track when it

determined that the write-protect notch of the diskette is covered. No
write could be performed.

PRODOS MESSAGES

OPERATING SYSTEM SELECTED: DOS 3.x

This message is sent to the printer to identify the operating system
selected (DOS 3.3 or DOS 3.2).

PROCESSING VOLUME ON UNIT NUMBER $XX

This message is sent to the printer to indentify the unit number of the
ProDOS volume being processed.

1/0 ERROR, PLEASE CHECK DEVICE,
THEN PRESS RETURN

Make sure the device you have selected is on and ready.

NO DEVICE CONNECTED

There is no ProDOS disk device connected to the selected slot and drive.

DEVICE WRITE PROTECTED.
PLEASE REMOVE WRITE PROTECTION,
THEN PRESS RETURN. :

The device you have selected is write protected. For FIXCAT to correct
errors on your disk it must not be write protected.

Fixcat 5-11

NOW PROCESSING /xxxxx

This is the directory FIXCAT is now processing.

BAD STORAGE TYPE, CANNOT PROCESS FILE.

The storage type for the current file is not a valid one, the file cannot
be processed.

PLEASE ENTER A NEW NAME FOR THIS FILE.

The name of the displayed file is not a valid file name. Enter a new
name,

ILLEGAL FILE NAME.

The name you have entered is not a valid file name. Enter a new name.

DIRECTORY NAME BAD.

The name of the directory is an illegal name. You will be prompted for a
new name,

DIRECTORY NAME BAD.

The name of the directory is an illegal name. You will be prompted for a
new name.

ERROR READING DIRECTORY,

When checking file names, FIXCAT was unable to read a directory block
due to an I/0 error.

ERROR WRITING DIRECTORY.

When writing a directory that has had a file name changed, an 1/0 error
has occurred.

VOLUME NAME ILLEGAL.

The name of the volume is illegal.

PLEASE ENTER A NEW VOLUME NAME.

When the name of the volume is illegal you are prompted to enter a new
name for the volume.

5-12 Bag of Tricks 2

FILENAME: filename

FIXCAT is checking this file for validity and is using it to build its
Volume Bitmap. The following messages may appear.

FILE TYPE: type

This is the file type found in the directory.

STORAGE TYPE: storage type

This is the storage type found in the directory.

MASTER INDEX BLOCK: $nnnn

This is the index block number found in the directory.

DATA BLOCKS: #nnnn $nnnn etc.

This is a list of data blocks for the file.

DIRECTORY BLOCKS: $nnnn $nnnn etec.

This is a list of the blocks of a subdirectory.

UNABLE TO READ ENTIRE DIRECTORY

FIXCAT is not able to process the file due to some unrecoverable error.

UNABLE TO READ FILE. DELETE IT?

FIXCAT is not able to read the first index block of a file. If you reply
YES, FIXCAT will delete it from the in memory image of the directory.

TOTAL BLOCKS ALLOCATED TO FILE:$XXXX

This is the total number of blocks actually used by the file.

NUMBER OF BLOCKS USED BAD.

The number of blocks used by the file is bad. Reply YES to fix it.

Fixcat 513

VERSION NUMBER BAD.

The version number for the file or directory is bad. Reply YES to fix it.

MINIMUM VERSION NUMBER BAD.

The minimum version number for the file or directory is bad. Reply YES
to fix it.

ACCESS BYTE BAD.

The access byte for the file or directory has one or more of the
undefined bits set. Reply YES to fix it.

HEADER POINTER BAD.

The pointer to the directory header is bad. Reply YES to fix it.

CHECKING VALIDITY OF DIRECTORY HEADER.

FIXCAT is checking the validity of the header entry for the directory.

ENTRY LENGTH BAD.

The length of entries listed in the directory header is bad.

ENTRIES PER BLOCK BAD,
The number of entries per block listed in the directory header is bad.
FILE COUNT BAD.

The number of files listed in the directory header is bad.

STORAGE TYPE BAD.

The storage type of the directory header is bad.

BITMAP POINTER BAD.

The pointer to the Volume Bitmap in the Volume Directory header is bad.

5-14 Bag of Tricks 2

TOTAL BLOCKS BAD.

The size of the volume in the directory header is bad.

PARENT POINTER BAD.

The pointer to the parent directory is bad.

PARENT ENTRY BAD.

The parent entry for the directory is bad.

PATENT ENTRY LENGTH BAD.

The parent entry length is bad.

UNABLE TO READ ENTIRE DIRECTORY.

FIXCAT cannot read the entire directory due to an MLI error or
pointer. ’

DIRECTORY BUFFER FULL.

The directory is too long for FIXCAT to process.

ERROR READING VOLUME DIRECTORY.

There is an 1/0 error in one of the block of the Volume Directory.

CHECKING DIRECTORY LINKS.

FIXCAT is checking the links between the directory blocks.

LINK TO PREVIOUS BLOCK BAD.

bad

The link to the previous block in one of the directory blocks is bad.

LINK TO NEXT BLOCK BAD.

The link to the next block in one of the directory blocks is bad.

Fixcat 5-18

END OF DIRECTORY LINK BAD.

The link at the end of the directory is not zero.

NO CHANGES WERE MADE TO THE DIRECTORY.

There were no changes made to the directory, so it does not have to be
written to the disk.

WOULD YOU LIKE TO WRITE THE UPDATED DIRECTORY TO THE DISK?

There have been changes made to the current directory. Reply YES if
you want these changes made permanent.

ERROR WRITING DIRECTORY TO DISK,
WRITE NOT COMPLETED.

There was an I/0 error writing the directory to the disk, so the entire
directory was not written.

ERROR WRITING VOLUME DIRECTORY.

There was an I/0 error writing the Volume Directory to the disk, so the
entire directory was not written,

WOULD YOU LIKE TO SCAN FOR LOST
DIRECTORIES?

If you do not think that you have any missing directories, reply NO. If
you wish to have FIXCAT search the entire diskette for "unattached"
directory headers, reply YES. One word of warning, however. FIXCAT
may find some old directories you don't want, such as previously deleted
ones. These old directories may be somewhat "moth eaten" in that some
of their blocks may have been overwritten. FIXCAT will display a listing
of the files in each directory that it finds, and ask you if you really want
it recovered. The following messages will occur during scan.

SCANNING FOR LOST DIRECTORIES.
FIXCAT is reading every un-allocated block of the disk looking for

directories, This could take quite a while for large devices, so be
patient.

5-16 Bag of Tricks 2

RECOVERY DIRECTORY FULL, SCAN ENDED,

The recovery directory buffer is full, no more files can be recovered, so
the scan is ended.

WOULD YOU LIKE TO SCAN FOR LOST FILES?

If you do not think that you have any missing files, reply NO. If you
wish to have FIXCAT search the entire diskette for "unattached" index
blocks, reply YES. One word of warning, however. FIXCAT may find
some old files you don't want, such as previously deleted ones. These
old files may be somewhat "moth eaten" in that some of their blocks may
have been overwritten. FIXCAT will display a portion of the first data
block of each file it finds to ask you is you really want it recovered.
The following messages will occur during scan.

SCANNING FOR LOST FILES.
FIXCAT is reading every un-allocated block of the disk looking for

directories. This could take quite a while for large devices, so be
patient.

FILE LOCATED. FIRST DATA BLOCK:

XXXXXXXXXXXXXXXXXXXXXXXX secereccsce
XXXXXXXXXXXXXXXXXXXXXXXX: cecsescasese
XXXXXXXXXXXXXXXXXXXXXXXX seevereecsee

etc.

WOULD YOU LIKE TO RECOVER THIS FILE?

FIXCAT has found an index block that is not listed in any directory. The
first portion of the file is displayed so you can identify it. Reply YES if
you would like to recover the file.

PLEASE GIVE A NAME TO THE FILE.

Enter a name for the recovered file.

PLEASE SELECT A FILE TYPE:

Select a file type form the list displayed.

PLEASE ENTER THE FILE TYPE: $XX

If you select other as the file type, you will get this message, aking for
the file type in hex.

Fixcat 5-17

ERROR READING FILE.

There was an I/0 error reading the file.

New subdirectory is required for
recovered files. Write it to disk?

You have recovered one or more subdirectories and/or files. It is now
time to write the RECOVER subdirectory, which contains the recovered
subdirectories and files, to disk. Answer YES to do this. Answer NO if
you don't wish to write to disk, which will defeat the recovery process
you just went through.

WRITING RECOVERY DIRECTORY TO DISK.
IF YOU RUN FIXCAT ON THIS DISK AGAIN
YOU MUST FIRST DELETE OR RENAME THE
RECOVERY DIRECTORY.

The recovery directory is being written to disk. The warning is because
recovering files twice on the same disk will create two subdirectories
called RECOVER unless the first one is changed before the second
FIXCAT operation,

VOLUME FULL, UNABLE TO WRITE RECOVERY DIRECTORY.

There is no room on the volume to write the recovery directory. Copy a
file to another disk, delete it, and re-run FIXCAT.

VOLUME DI